

PFAU X

Models for Nucleation and Condensation on Nanoparticles

Stefan Radl,¹ Mario Schriefl^{2,3}

¹TU Graz, Institute of Process and Particle Engineering ²TU Graz, Institute of Electronics

Tristan Reinisch,^{3,4} Alexander Bergmann,³ Athanasios Mamakos³

³AVL List GmbH ⁴CTR Carinthian Tech Research AG

Why Nano?

Condensation Particle Counters (CPCs)

©AVL List GmbH

Droplets nucleate and grow in a CPC on nanoparticles

... with fast dynamics, coupling of heat and mass transfer, **droplets are polydisperse**, and a size change typically 3 orders of magnitude ...

- Where do these phenomena take place?
- What is the final **droplet size distribution**?
- How can we **troubleshoot CPCs**?

Droplets nucleate and grow in a CPC on nanoparticles

• What is the challenge?

Multiphase Flow inside the CPC

- continuous phase (e.g., n-Butanol vapor in air)
 - modeled with the cpcFoamCompressible solver implemented in OpenFOAM
 - all effects relevant for CPCs considered (thermodiffusion, heat of evaporation / condensation, etc.)
- disperse phase
 - qmomCloud library
 - solves the population balance equation for the droplets using a QMOM approach (univariate in droplet diameter)

Rf

INLET

Х

(a) Evaporator-Condenser system in a CPC

(b) saturation ratio profile – solution for the continuous phase

nucleation

Population Balance Equation (PBE)

$$\frac{\partial \mathbf{n}(\mathbf{x},\xi,t)}{\partial t} + \frac{\partial}{\partial x_i} \left(u_i \mathbf{n}(\mathbf{x},\xi,t) \right) = \frac{\partial}{\partial \xi} \left(\dot{\xi} \mathbf{n}(\mathbf{x},\xi,t) \right) + S$$

Disperse phase: characterized by the number density function (NDF) $n(\mathbf{x}, \xi, t)$

CPC: property ξ is the droplet size \rightarrow NDF = droplet size distribution

PBE very difficult to solve directly for $n(\mathbf{x},\xi,t)$

arowth

- \rightarrow solve the PBE for some lower order moments of the NDF
- \rightarrow transformation to a set of moment equations method of moments (MOM)
- \rightarrow the moment equation for the k-th moment is obtained by:
 - > multiply PBE with ξ^k
 - integrate over phase space

Moment Transport Equations

- Moments approximate the NDF
- Moments have a physical meaning:
 - m₀..... number concentration [m⁻³]
 - m₁..... total droplet size p. vol. [m⁻²]
 - L₃₂=m₃/m₂... Sauter mean diameter [m]
- ➢ If R term unclosed, reconstruct NDF with QMOM (set of N nodes and N weights)
- *R* terms determined by physical models

$$\frac{\partial m_0}{\partial t} + \frac{\partial}{\partial x_i}(u_i m_0) = \mathcal{R}_0$$
$$\frac{\partial m_1}{\partial t} + \frac{\partial}{\partial x_i}(u_i m_1) = \mathcal{R}_1$$
$$\vdots$$
$$\frac{\partial m_k}{\partial t} + \frac{\partial}{\partial x_i}(u_i m_k) = \mathcal{R}_k$$
$$\vdots$$
$$\frac{\partial m_{2N-1}}{\partial t} + \frac{\partial}{\partial x_i}(u_i m_{2N-1}) = \mathcal{R}_{2N-1}$$

Solution for the disperse phase approximated by time evolution of first 2N moments (m_0 , m_1 , ..., m_{2N-1})

Quadrature Method of Moments

Approach

> moments are approximated by *N* weights w_{α} and *N* nodes ξ_{α}

$$m_k = \int_{\Omega_{\xi}} \xi^k n d\xi pprox N_p \sum_{\alpha=1}^N \xi^k_{\alpha} w_{\alpha}$$

weights and nodes are calculated with the first 2N moments (e.g., PD algorithm)

Result

- the first 2N moments are reproduced exactly
- unknown moments in the source terms of the moment transport equations can be computed to close the system of equations!!

$$\frac{\partial m_k}{\partial t} + \frac{\partial}{\partial x_i} (u_i m_k) = \left[2 \frac{\rho_f}{\rho_I} D_v Sh \ln(1 + B_m) \right] k \underbrace{N_p \sum_{\alpha=1}^N \xi_\alpha^{k-2} w_\alpha}_{m_{k-2}} + J_{het} \left(\frac{d_{d,init}}{2} \right)^k$$

Growth Models

0) The Basics

 $\dot{\xi} = 2 \frac{\dot{m}_{cond}}{\rho_l \,\xi^2 \,\pi}$

Mass

concentration

 $\dot{m}_{cond} = Sh \pi D_v \xi \Delta c$

$$\dot{\xi} = 2 \frac{Sh D_{\nu}}{\xi} \frac{1}{\rho_l} \Delta c$$

...inserted into the moment evolution equations yields...

$$\frac{Dm_{k}}{Dt} = \begin{bmatrix} \dot{\xi} \xi \end{bmatrix} k m_{k-2}$$
$$\dot{\xi} \xi \neq f(\xi)$$

... in case we assume that:

Key scaling of the growth rate in the case of mass transfer limitation

$$\dot{\xi} \propto 1/\xi$$

Growth Models

1) Simple Continuum-Regime Closure (thermal equilibrium, dilute vapor, large droplets)

$$\dot{\xi} = 2 \frac{Sh D_{v}}{\xi} \frac{1}{\rho_{l}} \frac{1}{R_{g,vap}} \left(\frac{p_{vap}}{T} - \frac{p_{vap}^{sat}(T_{d})}{T_{d}} \right)$$

2) Classical Closure (Abramzon & Sirignano, 1989; thermal equilibrium, large droplets)

$$\dot{\xi} = 2 \frac{Sh D_v}{\xi} \frac{\overline{\rho}_{gas}}{\rho_l} \ln (1 - B_m)$$

$$considers$$
Stefan flow
$$B_m = \frac{y_{vap}^{sat} - y_{vap}}{1 - y_{vap}^{sat}}$$

Growth Models

3) Free-Molecule-to-Continuum-Regime Closure (Fuchs and Sutugin, 1970; Ahn and Liu, 1990)

 $\dot{\xi}\,\xi \neq f\left(\xi\right)$

... only approximate, because of **correction factors!**

$$\dot{\xi} = 2 \frac{Sh D_{v}}{\xi} \frac{1}{\rho_{l}} \frac{1}{R_{g,vap}} \left(\frac{p_{vap}}{T} - \frac{K_{Kelvin}}{T_{d}} \frac{p_{vap}^{sat}(T_{d})}{T_{d}} \right) \phi_{F}(\bar{\xi})$$

$$K_{Kelvin} = \exp\left(\frac{4\sigma MW_{vap}}{\rho_{l}R_{g,vap}T_{d}\bar{\xi}}\right)$$

$$K_{Kelvin} = \exp\left(\frac{4\sigma MW_{vap}}{\rho_{l}R_{g,vap}T_{d}\bar{\xi}}\right)$$

$$\left(T_{d}-T\right)\lambda_{air}\frac{Nu}{\overline{\xi}}=D_{v}\frac{Sh}{\overline{\xi}}\Delta h_{evap}\frac{1}{R_{g,vap}}\left(\frac{p_{vap}}{T}-\frac{K_{Kelvin}p_{vap}^{sat}\left(T_{d}\right)}{T_{d}}\right)\frac{\phi_{F,vap}\left(\overline{\xi}\right)}{\phi_{F,g}\left(\overline{\xi}\right)}$$

Expensive: iterations are required to determine T_d .

Graz University of Technology

Nucleation Model

1) Standard Heterogeneous Nucleation Model

Particle Geometry & Contact Angle

$$\Delta G_{het}^* = f_g \, \Delta G_{hom}^*$$

$$\Delta G_{hom}^* = \frac{4}{3} \pi \left(r^*\right)^2 \sigma$$

$$r^* = \frac{2\sigma}{\rho_l R_{g,vap} T \ln(S)}$$

$$J_{het} = J_{het}^{0} \exp\left(-\frac{\Delta G_{het}^{*}}{k_{B}T}\right)$$
A larger number

$$J_{het}^0 = d_p^2 \,\pi 10^{29}$$

The Software

Unfortunately, there is no publicly-available (x)MOM implementation in OpenFOAM!

Public contributions												
Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	
м												
w												
F												
Summary of Pull Requests, issues opened, and commits. Learn more.												ore
Contributions in the last year 0 total Jul 4, 2014 – Jul 4, 2015				Longest streak 0 days No recent contributions					Current streak 0 days No recent contributions			

https://github.com/OpenQBMM

So, let's start from scratch:

- cpcFoamCompressible as new solver
- qmomCloud for modeling droplets

The Software

Demo Time

PFAU X Models for Nucleation and Condensation on Nanoparticles THANK YOU!

<u>Stefan Radl</u>,¹ Mario Schriefl^{2,3}

¹TU Graz, Institute of Process and Particle Engineering ²TU Graz, Institute of Electronics

Tristan Reinisch,^{3,4} Alexander Bergmann,³ Athanasios Mamakos³

³AVL List GmbH ⁴CTR Carinthian Tech Research AG

CTR and AVL List GmbH gratefully acknowledge the financial support of this project by the BMVIT and the BMWFW and the federal provinces of Carinthia and Styria within the COMET-Competence Centers for Excellent Technologies Program.