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ABSTRACT 

Traditionally coupled field reactor analysis has been carried out using 

several loosely coupled solvers, each having been developed independently 

from the others. In the field of multi-physics, the current generation of 

object-oriented toolkits provides robust close coupling of multiple fields on 

a single framework. This research investigates the suitability of such 

frameworks, in particular the Open-source Field Operation and 

Manipulation (OpenFOAM) framework, for the solution of spatial reactor 

dynamics problems. For this a subset of the theory of the TIme-dependent 

Neutronics and TEmperatures (TINTE) code, a time-dependent two-group 

diffusion solver, was implemented in the OpenFOAM framework. This 

newly created code, called diffusionFOAM, was tested for a number of 

steady-state and transient cases. The solver was found to perform 

satisfactorily, despite a number of numerical issues. The object-oriented 

structure of the framework allowed for rapid and efficient development of 

the solver. Further investigations suggest that more advanced transport 

methods and higher order spatial discretization schemes can potentially be 

implemented using such a framework as well. 
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1. INTRODUCTION 

Nuclear reactor analysis deals with the coupled solution of the many physical processes 

taking place in a nuclear reactor. The solution of these individual physical processes has 

traditionally been carried out using several loosely-coupled solvers, each having been 

developed independently from the others. In particular, the calculation of the spatial 

distribution of neutrons in space and time is traditionally separated completely from the heat 

transfer calculation. This separation was introduced in the past for a number of reasons; the 

solution of each class of problem is typically undertaken by specialists in each field, the 

complexity of the problems differ, and there are numerical differences between the classes of 

problems being modeled. This separation leads to problems when coupling the solvers. Often 

differences in data management and spatial discretization require complex interface codes to 

be developed for the mapping and passing of data. Often independent source code is written 

to perform the same tasks in each solver and there is a significant amount of duplication. This 

in turn makes the verification of the coupled codes a time consuming and often labour-

intensive task. 

This particular problem is also encountered in the field of general multi-physics, which deals 

with the coupled solution of multiple fields. In the past, the fields of reactor analysis and of 

general multi-physics analysis, e.g. computational fluid dynamics or structural analysis, were 

considered to be separate entities, and therefore each has developed independently from the 

other over the years. The developments in each field have shown very different trends, driven 

largely by external influences in industry. In particular, strict regulations in the nuclear 

industry require that newly developed codes undergo a detailed verification and validation 

process, often prolonging the development times considerably. Thus there has been a 

reluctance to develop new codes. More often than not an older code will be updated, with the 

disadvantage that the older programming methodologies and structures remain unchanged. 

In contrast, general multi-physics analysis applied to other engineering fields has advanced 

rapidly over recent years, embracing newer programming methodologies such as object-
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oriented programming. This has in turn led to the development of several multi-physics 

toolkits, allowing the solution many classes of engineering problems in a simultaneous 

fashion, and readily extendable to new classes of problems. One such example is the Open-

source Field Operation and Manipulation (OpenFOAM) toolkit, a set of classes written in the 

C++ programming language, which solves general partial differential equations using the 

finite-volume approach. The finite-volume approach is the standard methodology used today 

in computational fluid dynamics (CFD) calculations for the solution of fluid flow problems. It 

may be considered an extension to the finite-difference approach, which conserves the 

properties of a variable over a control volume. 

1.1 Research Objectives 

The objective of this research is to show that modern object-oriented multi-physics toolkits 

can effectively be used for the solution of spatial reactor dynamics and other classes of reactor 

analysis problems. In achieving this objective, the following questions will be considered and 

answered. 

1. Can the OpenFOAM toolkit be successfully used to solve the spatial- and time-

dependent multi-group neutron diffusion equation? 

2. Does the OpenFOAM toolkit provide advantages in terms of the development and 

maintenance of a reactor analysis code? 

3. Can the OpenFOAM toolkit be extended to allow for more advanced transport 

approximations such as discrete-ordinates and spherical-harmonics? 

4. Can high-order spatial discretization schemes such as the nodal methods be 

generalized such that they may be implemented using the OpenFOAM toolkit? 

Questions 1 and 2 are the focus of this research and will be answered using a practical 

approach. The remaining questions are essentially speculative, and answers will be given 

based on experience gained over the duration of this research. A step-by-step approach is 

followed which allows the above questions to be answered. Each step represents a logical 
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progression towards an understanding of the requirements of reactor analysis codes as well as 

the capabilities and advantages provided by the OpenFOAM toolkit. An existing code, the 

TIme-dependent Neutronics and TEmperatures (TINTE) code, provides the reference theory 

for a basic spatial- and time-dependent solver. The implementation of a subset of the TINTE 

functionality using OpenFOAM is the primary means by which experience will be gained for 

the purposes of answering the above questions.  

1.2 Outline of Dissertation 

Chapter 2 provides a review of the available literature that pertains to this research. Included 

in this chapter are a discussion and background on general reactor analysis and its 

development over the years in section 2.1. A basic introduction to the TINTE code system is 

also provided. The concept of multi-physics analysis is discussed in section 2.2, and we 

explore the current-day field of CFD analysis as a form of multi-physics analysis. The 

objective of the discussion in section 2.3 is to provide a general comparison between the 

current solution methods employed in both multi-physics analysis and reactor analysis codes. 

The concept of object-oriented programming and the advantages it provides for code 

development are introduced in section 2.4, followed by an introduction to object-oriented 

toolkits, which have been developed specifically for multi-physics analysis. In particular, one 

example of such toolkits, the OpenFOAM toolkit, is discussed in section 2.5. 

The OpenFOAM toolkit is studied in more detail in chapter 3. Here the structure and 

functionality of the toolkit is examined from a reactor analysis perspective, addressing the 

major features. Chapter 4 details the basic subset of theory of the TINTE code, rewritten in a 

form that is more suited for direct implementation in OpenFOAM. The implementation of this 

theory in OpenFOAM is then described in chapter 5. Along with this implementation 

description useful and convenient features are noted, as well as certain missing features that 

would have been of assistance had they been available. Chapter 6 contains a summary of 

results, obtained using the newly implemented solver, for a compiled set of simple analytical 
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cases and numerical benchmark calculations. A discussion of findings and conclusions 

follows this in chapter 7. 
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2. LITERATURE SURVEY 

2.1 Nuclear Reactor Dynamics Methods 

The principle equation of use in reactor analysis is the neutron transport equation (Stacey 

2001), which is derived from the Boltzmann equation for the kinetic theory of gases. This 

equation can be used to determine the distribution of neutrons and photons in space as a 

function of time. The transport equation may be solved directly in only a very limited number 

of cases. For this reason, approximations and simplifications to the transport equation are 

applied to solve engineering problems.  

The solution methods may be divided into two classes, namely stochastic (Monte Carlo) and 

deterministic methods. The deterministic methods may be further classified into integral and 

integro-differential transport methods. The integro-differential transport methods include the 

discrete-ordinates and spherical-harmonics methods. 

The discrete-ordinates methods (S-N methods) are based on the concept of evaluating the 

transport equation in a number of discrete angular directions. Quadrature relationships are 

used to replace the scattering and fission source angular integrals with sums over the angular 

directions (ordinates) (Stacey 2001). The result is a coupled set of equations for each ordinate 

and energy group, which are solved simultaneously to obtain the directional group fluxes. 

The spherical harmonics methods (P-L methods) are based on the concept of representing the 

angular flux and differential scattering cross-section by means of Legendre polynomials 

(Stacey 2001). The result is a coupled set of equations for the N-Legendre flux moments and 

each energy group, which are solved simultaneously to obtain group fluxes. 

A well known simplification to the transport equation is the diffusion approximation. 

Diffusion methods make use of Fick’s law of diffusion to approximate the neutron current at a 

point in the reactor using a diffusion coefficient. 
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The diffusion equation is mathematically equivalent to the first order discrete-ordinates (S-1) 

and spherical harmonics (P-1) approximations. The diffusion approximation, in its derivation, 

assumes that neutron scattering is isotropic, neutron absorption is less likely than scattering,  

and that there is a linear spatial variation in the neutron distribution. These assumptions are 

valid for moderating materials, but not for fuels, strong absorbers and other regions of strong 

flux gradient, or cavities. Somewhat better approximations may, however, be obtained for the 

situations above by means of adjusted nuclear parameters. As an example, effective 

homogenized cross-sections (Stacey 2001) may be used to approximate the flux in regions 

containing strong absorber materials and to model the influences of control rods. Similarly, 

direction-dependent diffusion coefficients may be used to model the neutron streaming effects 

in cavities. 

Despite the assumptions made and the inaccuracies associated with the diffusion 

approximation, the multi-group diffusion equation is still in common use today for spatial- 

and time-dependent reactor analysis because of its relative simplicity and speed. As an 

example, the United States Nuclear Regulatory Commission (U.S.NRC) currently uses the 

Purdue Advanced Reactor Core Simulator (PARCS) code (Joo et. al. 1998), a diffusion 

equation based solver, to predict the time-dependent behaviour of reactors during operation 

and during postulated accident conditions. 

2.1.1 A Brief Background on Computational Reactor Analysis 

Smith gives a very thorough overview of the development of reactor core analysis methods 

over the past decades (Smith 2003). Early reactor designs made use of the so-called four- and 

six-factor formulae. For this, extensive use of data fits, geometrical approximations and 

analytical solutions was required. In the 1950s, methods were driven largely by the needs of 

the naval light-water reactors. A large emphasis was placed on creating simple mathematical 

models for the many analytical concepts necessary for reactor analysis. These simplified 

analytical models relied heavily on an understanding of the underlying physics of the 

problem. 
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With the advent of the electronic computer in the 1960s and 1970s, reactor design began to 

make extensive use of computational methods. Early reactor dynamics codes solved the one-

dimensional few-group diffusion equations, taking into account the effects of delayed 

neutrons and the fission products 135I and 135Xe. This was later extended to two-dimensional 

finite-difference codes. 

During the 1980s more advanced methods such as the finite-element method (FEM), amongst 

others, began to gain popularity. A number of codes were written making use of these 

‘more exotic’ spatial discretization methods. An example of this is the TINTE code, discussed 

in more detail in upcoming sections, which makes use of the leakage iteration method, an 

extension of the finite-difference method. It was during these years that the personal computer 

industry boomed. It was also during this time, however, that accidents such as Three-Mile 

Island (TMI) and Chernobyl took place. This caused the nuclear industry to lose much 

momentum, and also reactor analysis code development. More stringent safety requirements 

resulted in increased code development times and the nuclear industry was reluctant to 

develop new codes. Over the last decade (mid 1990s onwards) the nuclear industry has since 

regained some momentum and, with this, a number of more modern codes have been 

developed. 

There is currently an emphasis on replacing the older simplified methods of solution with a 

first principles approach to solving the neutron transport equation (Ragusa 2006). At present, 

a number of three-dimensional implementations of the discrete ordinates methods are 

available. One good example of a modern deterministic neutron transport solver is the 

research code ATTILA (Lucas et. al. 2004). ATTILA solves a first-order form of the steady-

state transport equation on a three-dimensional unstructured spatial mesh, using tetrahedral 

mesh elements. ATTILA is coded in FORTRAN 90. 

Ivanov (Ivanov 2007) states that current trends in nuclear power generation and in the design 

of next-generation plants are resulting in a greater emphasis being placed on improving 

analyses through improved coupled methodologies. The concept of multi-physics multi-scale 
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reactor analysis code systems has recently been introduced, aiming towards flexible and 

efficient coupling of reactor analysis models. 

2.1.2 The TINTE Code System 

The TIme-dependent Neutronics and TEmperatures (TINTE) code system (Gerwin 1987) 

(Gerwin et. al. 1989) is a two-group diffusion code for the calculation of the time-dependent 

nuclear and thermal behavior of high temperature gas-cooled reactors (HTGRs), in two-

dimensional axisymmetric geometry. The code was originally written for the prediction of the 

behavior of pebble-bed reactors for short-term dynamics (power excursions, etc.) but this was 

later extended to medium term dynamics (xenon oscillations, etc.). The code was specifically 

written with speed in mind. A number of approximations and simplifications have been 

introduced to the code that have allowed full spatial and time-dependent reactor analysis at 

real-time or faster speeds using modern personal computers. 

Written in FORTRAN 77, the neutronic module has recently been reverse engineered at 

PBMR (Clifford 2007), therefore the underlying equations and solution algorithms are well 

understood. TINTE solves the two-group neutron diffusion equations, taking into account the 

effects of delayed neutrons, fission-product poisoning and temperature changes. The reactor is 

modeled using a structured, rectangular, two-dimensional axisymmetric mesh. 

2.2 Multi-physics Analysis 

Multi-physics deals with coupled-field analysis, allowing analysts to determine the combined 

effects of multiple fields (physical phenomena) on a design (Lethbridge 2004/2005). In the 

past, the effects of these various phenomena were treated separately, utilizing a single analysis 

for each phenomena. As an example, the deflection of an aircraft wing was determined in the 

past by first analyzing the fluid flow over an undeflected wing. The resulting forces were then 

used as inputs to a wing deflection calculation. The modern multi-physics approach would be 

to couple a finite-volume (FV) computational fluid dynamics (CFD) and a finite-element (FE) 

material stress calculation together as a single calculation. The wing deflection is used to 



 

9 

update the mesh for the CFD calculation and the CFD calculation yields surface pressures and 

shear forces for the material stress calculation. 

Many traditional nuclear reactor analysis codes may in fact be regarded as multi-physics 

codes. However, of interest to us are recent developments that have taken place in this field. 

Over recent years, generic CFD and finite-element analysis (FEA) codes have evolved into 

very competent multi-physics platforms. Typical examples of these codes are CFD-

FASTRAN (CFD-FASTRAN 2007), ANSYS Multi-physics (Ansys MP 2007) and CFD-

ACE+ (CFD-ACE+ 2007), combining fluid mechanics, solid stress and deflection analysis, 

heat transfer and chemical reaction kinetics as coupled modules within the overall package. 

To a large extent, these packages consist of a collection of coupled modules. The coupling 

between various fields may be either direct (implicit) or iterative (explicit) (Waterman 2004), 

depending on the complexity of the equations being solved. Implicit coupling requires a 

single matrix solution for all fields, while explicit coupling sequentially solves the individual 

problems, passing explicit values across the field interfaces and iterating until all solutions 

converge. This explicit coupling is achieved by means of tailored third party interfaces. The 

modules themselves are built on existing and well established CFD codes, solid mechanics 

codes, etc., the former of which are briefly discussed below. For reasons given below, modern 

CFD codes can be regarded as multi-physics codes and, because of this, the historical 

development and current status of this class of codes are discussed in the upcoming sections.  

2.2.1 Computational Fluid Dynamics 

The field of computational fluid dynamics (CFD) deals with the solution of the set of partial-

differential-equations governing fluid flow, using a combination of mathematical modeling 

and numerical methods. The basis of CFD is the three conservation laws of mass, momentum 

and energy, using a continuum approach (Fletcher 1990). It should be noted that CFD, as it is 

applied today, deals with many closely coupled physical phenomena such as fluid flow, 

multiple fluid phase interactions, heat transfer, chemical reaction kinetics and particle 

transport. A modern CFD code may therefore be regarded as a multi-physics code. 
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2.2.2 A Brief Background on Computational Fluid Dynamics 

The U.S. National Committee on Theoretical and Applied Mechanics gives a basic historical 

overview of CFD code development up to the 1990s (U.S. NCTAM et. al. 1991). The first 

methods for solving fluid flow using computational methods were based on conformal 

transformations of the flow around a cylinder to flow around airfoil cross-sections. The 

extension of these methods to three-dimensions was limited, at the time, by the available 

computing power. In 1966 the so-called panel method, allowing the three-dimensional 

solution of the potential flow equations, was first presented. This method represents the 

surfaces of the model geometry as several panels. These methods were largely developed by 

the aircraft industries of the time: NASA, Boeing, Lockheed, etc. 

Panel codes were followed by full potential codes in the mid to late 1970s. The potential 

equations have limited applicability and with the appearance of more advanced computers in 

the 1970s, the solution of the Euler equations of fluid flow was considered. The upwind 

finite-difference, finite-volume and finite-element methods were developed during that 

decade. A number of commercial codes were developed in response, featuring multi-grid and 

other fast direct or iterative solvers. Initially, only structured grids were considered, but over 

time this was extended to unstructured grids. 

In the 1980s the CFD service industry was created and this expanded very quickly into the 

1990s. The growth and development of CFD codes and methodologies over these decades 

followed that of computers. This growth was largely driven by target industries, the greatest 

developments being seen in the aerodynamics, numerical weather prediction, acoustics and 

fluid-structure interaction, propulsion systems, and nuclear reactor design fields. This diverse 

set of target industries has meant that CFD has been a topic of great interest for the past two 

decades. Fletcher states that ‘perhaps the most important reason for the growth of CFD is that 

for much mainstream flow simulation, CFD is significantly cheaper than wind-tunnel testing  

and will become even more so in the future’ (Fletcher 1990). A more recent description on the 
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current status of CFD, and computational mechanics in general, is given by Oden et al. (Oden 

et. al. 2002).  

When modern CFD codes are compared with the codes of the 1980s, there are vast 

differences in functionality, capabilities, as well as ease-of-use. When compared with the 

current generation of reactor analysis codes, there are also significant differences as a result of 

historical influences. Some of these differences are discussed in the next section. 

2.3 Comparison Between Modern Computational Fluid Dynamics and 

Reactor Analysis Codes 

If we consider the status of development of reactor analysis versus CFD codes up to the late 

1970s, common trends are shared by both. By the early 1980s common features of codes 

included the use of finite-difference discretization on structured meshes, a linear 

programming style in FORTRAN 77. Additionally, the coupling of phenomena was generally 

achieved by externally coupling existing solvers. If one considers the changes made in each 

field since then, an obvious contrast emerges. 

Modern reactor analysis codes employ methods such as the nodal and finite-element methods. 

Only in a few cases are non-orthogonal unstructured meshes used. A code will generally 

consist of several loosely coupled modules. It is interesting to note that despite the availability 

of more advanced programming languages such as FORTRAN 90/95 and C++, which support 

structured and object-oriented programming features, many modern reactor analysis codes are 

still written in a linear fashion using FORTRAN 77. One contributing factor is that the 

licensing of new reactor analysis codes is a very time-consuming and drawn out process. 

Developers are therefore reluctant to create new codes from scratch. 

While the underlying theory has not changed significantly, the methodologies used in CFD 

analysis have changed substantially over the last few decades. Current commercial CFD 

codes almost exclusively use the finite-volume method. Typical examples of such codes are 

Star-CD (Star-CD 2007), Fluent (Fluent 2007) and CFX (Ansys CFX 2007). These codes 
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provide robust multi-grid solvers for the three-dimensional heat and mass transport equations, 

using fully unstructured meshes. Non-orthogonality of mesh cells is compensated for. The 

solvers are often extensible to allow for the solution of different classes of problems such as 

chemical reaction kinetics. Easy-to-use graphical user interfaces are provided for pre-

processing, post-processing and the management of calculations. Modern CFD codes are 

almost exclusively written in an object-oriented language such as FORTRAN 90 or C++. 

Despite obvious differences in the physics being modelled, it is clear that the field of reactor 

analysis would potentially benefit by taking careful advantage of the advancements which 

have been made in CFD and other general multi-physics fields over the years. 

2.4 Object-Oriented Programming 

Rumbaugh et al. defines object-oriented programming (OOP) as programming in terms of a 

collection of discrete objects that incorporate both data and behavior (Rumbaugh et. al. 1991). 

Historically, a program was viewed as a logical procedure that takes input data, processes it, 

and produces output data. In this context, the programming challenge was seen as how to 

write the logic, not how to define the data. Object-oriented programming takes the view that 

what we really care about are the objects we want to manipulate rather than the logic required 

to manipulate them. This is not to say that the logic no longer has importance but rather that, 

in the object-oriented context, each object is responsible for its own logic. 

Object-oriented programming was initially conceived in the 1960s in response to the 

increasing complexity of hardware and software systems at the time (Meyer 1988). An object-

oriented approach to programming was conceptualized to improve the quality of large 

complex hardware and software systems. 

FORTRAN 77 is the classical scientific programming language on which most reactor 

analysis code systems have been developed in the past. This programming standard has been 

rendered obsolete by the more advanced FORTRAN 90 (Brainerd et. al. 1996) and 

FORTRAN 95 standards, both of which include enhancements and extensions over 
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FORTRAN 77 for high-level scientific programming. These enhancements include the 

support for a number of object-oriented concepts. The primary reason for the popularity of the 

FORTRAN derivatives in scientific programming is the ease with which multidimensional 

arrays and matrices can be manipulated. The FORTRAN derivatives, however, do not have 

full support for all object-oriented features. 

While scientists would argue that a language such as C++ is not suitable for scientific code 

development and dedicated programmers would argue that FORTRAN 90/95 is too 

restrictive, it is clear that an object-oriented approach, which is supported by any number of 

modern programming languages, provides significant advantages for both code development 

and maintenance. 

2.5 Multi-physics Toolkits 

Numerous multi-physics toolkits (scientific computation frameworks) currently exist, 

providing general users and scientists flexible platforms on which sets of equations may be 

formulated and solved. Often these frameworks rely quite heavily on object-oriented 

structures and techniques to provide flexibility (Kruger 2004). The C++ language is often 

used as the basis for these frameworks for this reason. In the domain of FORTRAN-based 

programming languages, the concept of modular toolkits is found. One such environment 

(Filippone et. al. 1999) provides for the distributed solutions to general problems. With such 

modular toolkits, however, the user is often restricted to a fixed set of features. 

The Open-source Field Operation and Manipulation (OpenFOAM) C++ class library (Weller 

et. al. 1998) provides a framework on which reliable and efficient computational continuum 

mechanics (CCM) codes may be developed. Prior to being released into the public domain the 

framework was known simply as FOAM and therefore, in this text, the terms FOAM and 

OpenFOAM are used interchangeably. The framework has been developed such that the top-

level syntax of the code resembles closely the conventional mathematical notation used to 

represent tensors and partial-differential equations (PDEs). As an example (Weller et. al. 
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1998), the fluid mechanics mass conservation equation may be written in the mathematical 

form as shown below. 

( ) 0=•∇+
∂
∂

φ
t

ρ
 

where Uφ ρ= , U  is the fluid velocity vector, ρ  the fluid density and t  the time. 

The solution to this equation is programmed in FOAM as shown below. 

fvMatrix<scalar> rhoEqn 
( 
    fvm::ddt(rho) 
    + fvc::div(phi) 
); 
rhoEqn.solve(); 
 

In the above code, the variables rho  and phi  are FOAM objects, based on the object-oriented 

concepts introduced in section 2.4. Each contains full spatial- and time-dependent definitions 

for the variables they represent. This high-level representation of equations allows for easy 

error-checking and rapid implementation of solvers. Additional detail on the internal FOAM 

representation of these objects is provided in chapter 3. 

The framework was initially developed for the solution of CFD problems using the finite-

volume method, but has been successfully used for the solution of other classes of problems 

such as solid material stress modeling and magneto-hydrodynamics. More recently, the 

framework has been applied to the typical multi-physics problems of fluid-solid interaction 

(Jasak 2006). The object-orientated structure of the framework is such that extensions 

(discretization schemes, boundary conditions, etc.) for new classes of problems may be 

introduced without any modification to the existing code. The framework is flexible enough 

that new functionality may be implemented at both the high level (tensors, PDEs) as well as at 

the low level (matrix solvers, acceleration methods, etc.), thus making it suitable for both 

research and production versions of a solver.  

The FOAM framework provides many of the features normally found in today’s commercial 

CFD packages, namely steady-state and time-dependent finite-volume solutions on arbitrary 
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unstructured meshes, with non-orthogonality correction, as well as multiple time and spatial 

discretization schemes. Further detail on the structure and functionality of the FOAM 

framework as it pertains to this research is given in chapter 3. 

2.6 Closure 

In this chapter introductions were given to the concepts of reactor analysis and multi-physics 

analysis. As part of this, the TINTE code was introduced  as an example of a time-dependent 

multi-group diffusion solver. Further, a comparison was made between the development and 

current status of reactor analysis and general multi-physics codes. From this comparison it 

was shown that the field of reactor analysis could potentially benefit from current multi-

physics methods. The concept of an object-oriented approach to software development was 

introduced. This then led on to an introduction to object-oriented multi-physics toolkits, in 

particular the OpenFOAM toolkit. This toolkit is discussed further in the chapter 3. 
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3. THE FOAM FRAMEWORK 

The Field Operation and Manipulation (FOAM) framework, which was briefly described in 

section 2.5, will now be discussed in more detail. An emphasis is placed on the framework’s 

functionality as it pertains to this research. In particular, an attempt has been made to provide 

examples relevant to neutronic calculations. For a more comprehensive description refer to 

the FOAM Programmer’s Guide (OpenFOAM PG 2005). 

3.1 Tensors and Fields 

In FOAM mathematical equations are represented using tensors of varying rank. The most 

commonly found in nuclear and CFD calculations are tensors of rank 0 and 1, namely scalars 

and vectors. In FOAM a ranked tensor can be allocated dimensions; in this way, dimension 

checking is carried out for all operations. 

The field class is the basic container class for scalars, vectors and higher rank tensors. Spatial 

discretization is handled in FOAM using the finite-volume method. A three-dimensional 

unstructured finite-volume mesh (fvMesh ) is defined, consisting of any number of discrete 

cells. This mesh object, when associated with a field of tensors, is sufficient to describe the 

spatial distribution of the tensor over a given domain. Consider the scalar ( )t,rφ , which has 

both spatial- and time-dependence. This variable, when associated with a mesh, will have 

discrete scalar values ( )tiφ  within each cell. Similarly if the time-domain is discretized into 

the current time 1t , old time 0t , and any number of older time points, the fully discretized 

representation for the scalar can be written 1
iφ , 0

iφ , 1−
iφ , etc. FOAM therefore defines fields 

of tensors at each point in time. In FOAM terminology, the combination of a dimensioned 

tensor field at a discrete time point with a given mesh structure at the same time point is 

called a geometric field. Each geometric field is associated with its predecessors, i.e. the 

geometric field at previous time points. In FOAM a geometric field of scalars is termed a 

volScalarField , and a geometric field of vectors, a volVectorField . 
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FOAM includes the functionality to perform any number of operations on fields and 

geometric fields, including negation, addition, inversion, multiplication, trigonometric 

functions, cross-products, etc. depending on the rank of the tensor. This allows algebraic 

manipulation of the ranked tensor fields. The FOAM Programmer’s Guide (OpenFOAM PG 

2005) contains a more complete list of supported operations and functions. This functionality 

has been achieved in FOAM using C++ overloaded operators and functions. As an example, 

consider the typical example of the buildup of a fission product over time in a constant flux. 

( )101 −
′′′

+= ∆−∆− λλ

λ
γ

e
F

eNN  

where  

1N  and 0N  are the isotope concentrations at the end and start of the time interval 

γ  and λ  are the isotope fission yield and decay constant respectively 

F ′′′  is the fission reaction rate 

∆  is the time interval 

In FOAM, the coding for this would resemble that given below. 

N = N.oldTime()*EXP(-lambda*deltaT)  
    + F*gamma/lambda*( EXP(-lambda*deltaT)-1); 
 

Here the concentration N, at time 1, and N.oldTime() , at time 0, and the constant fission rate 

F are geometric fields of dimensioned scalars (volScalarField ). In this way the clumsiness 

traditionally associated with array operations in C++ has been removed and replaced by a 

functionality similar to that of FORTRAN 90, where operations are carried out for entire 

blocks of data. 

3.2 Spatial Discretization 

The solution domain is discretized to form a computational mesh, consisting of many discrete 

control volumes or cells. Each variable is principally defined at the cell volumetric centres. 

FOAM makes use of an arbitrarily unstructured mesh, thus any number of cells of any shape 

are allowed. The only limitation on this is that control volumes may not overlap and they 



 

18 

must completely fill the solution domain. A typical mesh structure and computational cell is 

depicted in Figure 1. 
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Figure 1: A Typical FOAM Mesh and Computational Cell 

Each computational cell is defined by several faces forming the cell boundary. The faces may 

be shared between cells, or alternatively lie on the edge of the domain, forming a boundary. 

Each face, in turn, consists of a number of vertices. A face may be shared by two cells, in the 

case of an internal face, and a vertex may be shared by any number of faces. Each face is 

therefore constructed from any number of vertices on a flat plane. The full geometric 

definition of a mesh consists of a list of vertices, a list of faces based on vertex IDs, and a list 

of cells based on face IDs. For these, FOAM defines the pointList , faceList  and cellList  

classes. 

Additionally, the boundaries of the model must be defined. For this FOAM provides the 

polyPatch  class, where each polyPatch  object represents a cell face on the solution domain 

boundary. It is typical in CFD applications to define boundaries on a global scale, e.g. for the 

simulation of flow in a tube, one would define the tube walls, the tube inlet and the tube outlet 

as global boundaries. Typically, on the discretized mesh, each of these global boundaries 

consists of several boundary cell faces. This collection of polyPatch  objects is contained in a 

polyPatchList  object representing one global boundary. All global boundaries on a mesh 

are grouped together into a single polyBoundaryMesh  object. The complete finite-volume 
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mesh definition, including the list of points, faces and cells, as well as the boundary 

definitions is contained in a fvMesh  object. 

3.3 The Finite-Volume Method and Discretization 

Consider a simplified representation of the diffusion equation involving the scalar neutron 

flux φ . 

( ) φφφ SD =Σ+∇•∇−  

For the purposes of this explanation, D , Σ  and φS  are considered arbitrary constants. The 

finite-volume methodology may be applied to this conservation equation by integrating the 

equation over a discrete control volume V , in this case the computational cell. This control 

volume integration is the key step which distinguishes the finite-volume method from other 

numerical methods (Versteeg and Malalasekera 1995). 

( ) ∫∫∫ =Σ+∇•∇−
VVV

dVSdVdVD φφφ  

For the diffusion term, one may apply Gauss’ theorem to transform the volume integral to a 

surface integral. For other terms the properties are assumed constant over the control volume. 

( ) VSVdD
s φφφ =Σ+•∇− ∫ A  

Here A  is the control volume surface area vector and s the surface of the control volume. 

The control volume is assumed to be bounded by any number of flat faces. The surface 

integral can be written as a sum over each of the faces. 

( ) VSVdD
f

f φφφ =Σ+•∇−∑∫ A  

Here the subscript f  denotes the cell face. The midpoint approximation can be applied at 

each face, yielding the following. 

( ) VSVD
f

ff φφφ =Σ+•∇−∑ A  

where fA  is the outward pointing face area vector. Thus we note that applying the finite-

volume method to a PDE results in an equation involving a sum over the cell faces. It is at this 

point that assumptions need to be made regarding properties at the faces. In the case above, 
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the neutron current φ∇D  at the face would need to be determined. It is at this point that a 

spatial differencing scheme is chosen for ( ) fD φ∇ . Such differencing schemes generally 

relate the value at the boundary to the cell centre value and neighbouring cell values. These 

schemes are discussed further in section 3.4. 

For the case of time-dependent equations, the finite-volume approach requires a spatial as 

well as a time integration. Consider now a simplified form of the time-dependent diffusion 

equation. 

( ) φφφφ
SD

tv
=Σ+∇•∇−

∂
∂1

 

Again, for the purposes of this explanation, v , D , Σ  and φS  are considered to be arbitrary 

constants. Using the approach shown previously, this may be written as shown. 

( ) VSVDV
tv f

ff φφφφ =Σ+•∇−
∂
∂

∑ A
1

 

or more simply 

( )( )ttf
t

φφ
,=

∂
∂

 

In the absence of analytical solutions to the terms contained within ( )( )ttf φ, , these values are 

calculated at discrete points in time (Ferziger and Peric 2001). If an explicit Euler (forward-

differencing) scheme is used, these values are evaluated at times for which the solution is 

already known. A fully implicit scheme (backwards-differencing) evaluates these values at 

times for which the solution is not already known. The Crank-Nicholson scheme is a 

combination of forwards and backwards differencing and assumes that these values are 

evaluated at some time in-between. The choice of differencing scheme affects the speed, 

stability and accuracy of the problem.  Fully explicit schemes tend to be less stable while 

requiring little computational effort. Small time-intervals are necessary to achieve suitable 

stability and accuracy. Fully implicit schemes are unconditionally stable but require more 

computational effort. In general, the resulting discretized equation will have the form 
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( ) ( )0
0

1
1

01

01

φφφφ
ff

tt
+=

−
−

 

where the superscripts/subscripts 0 and 1 denote the values at two consecutive time points. 

After the PDE is fully discretized, a matrix equation is constructed. For an arbitrary PDE, this 

matrix equation generally takes on the form 

SA =Φ  

Here A  is a coefficient matrix, S is a source term vector and Φ  the vector of ranked tensors 

being solved for. An important feature of FOAM is the automatic construction of the 

coefficient matrix A  and source term vector S for an arbitrary PDE. This is handled in 

FOAM using the classes of static functions contained in finiteVolumeMethod , abbreviated 

as fvm . Each fvm  function or operation returns a fvMatrix  object, which contains the 

coefficient matrix and source vector contributions, as well as a reference to the geometric 

field being solved for. The discretization method used to construct the coefficient matrix and 

source vector is dependent on user input. This is discussed further in section 3.4. Consider the 

simplified form of the time-dependent diffusion equation given below. 

( ) φφφφ
SD

dt

d

v
=Σ+∇•∇−1

 

Grouping the implicit terms (terms involving φ ) on the left of the equation, and explicit terms 

(independent of φ ) on the right of the equation, the above equation may be defined in FOAM 

as follows. 

fvMatrix diffusionEqn 
( 
    1/v*fvm::ddt(phi) - fvm::laplacian(D, phi) + si gma*phi == S 
); 
 
 

Note that there is a distinction between the explicit and implicit forms of expressions. In the 

FOAM context, explicit refers to expressions that are calculated using already known variable 

values at the time they are requested. In general numerics, these are often referred to as source 

terms. Explicit terms contribute towards the source vector S. In the FOAM context, implicit 

terms refers to expressions involving unknowns, and for which a solution is required. These 
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terms contribute towards the coefficient matrix A . Implicit terms may be made explicit, if 

necessary, and placed in the source term. This would primarily be done to stabilize the matrix 

inversion process, yielding the same solution but requiring iteration for convergence. 

The fvm  namespace functions aim, wherever possible, to return a coefficient matrix with no 

explicit terms, i.e. they aim to be fully implicit. In most cases, however, explicit sources are 

unavoidable, resulting from non-linearity within problems. The use of higher order spatial 

differencing schemes, mesh non-orthogonality correction, solution under-relaxation and time 

differencing, amongst others, will all contribute towards the source vector.  

As an example, the fvm::ddt  operator, for the case of Euler time integration over a time 

interval ∆ , would evaluate to 
∆
− 01 φφ

. The coefficient matrix would in this case evaluate to 

∆
1

 on the main diagonal with a contribution of 
∆

0φ
 added to the explicit source term. 

Consider also the case of the Laplacian (diffusion) term ( )φ∇•∇ D  which was linearised 

previously. 

( )∑ •∇
f

ffD Aφ  

The face current ( ) ffD A•∇φ  may be approximated by the cell-centre-to-cell-centre 

gradient f

NP

f
fD A

d
d

d
•

−φφ
, where d  is the cell-centre-to-cell-centre vector. Thus, in the 

case where d  is parallel to fA  (orthogonal mesh), the terms 
d

AD ff  and 
d

AD ff−  are added 

to the coefficient matrices for cells P and Nf respectively. If d  is not parallel to fA  (non-

orthogonal mesh), an explicit source term contribution is necessary to compensate for the 

non-orthogonality (Peric 1985) (Jasak 1996) (Ferziger and Peric 2001). 

A fully explicit equivalent to fvm  is provided by the finiteVolumeCalculus  class of static 

functions, abbreviated as fvc . All of the functionality of fvm  is replicated in fvc . In this case 
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the expression is evaluated as-is using the current values in each variable. The fvm  functions 

and operators provide the basis for the functionality shown in the example given in 

section 3.1. A typical neutronic example would be the calculation of cell neutron leakages 

using the diffusion approximation. 

Leakage = fvc::laplacian(D, phi); 
 

The Laplacian operator is just one of the many operators provided by the framework. The 

FOAM Programmer’s Guide (OpenFOAM PG 2005) provides a list of the available fvm  and 

fvc  operators and functions. 

3.4 Numerical Differencing Schemes 

Finite-volume integration produces equations that require us to make approximations for the 

value and/or gradient of a ranked tensor at the cell faces. For this, one of numerous available 

spatial differencing schemes may be chosen. FOAM allows the user to choose from many 

differencing schemes for each PDE operator. Similarly, the user has a choice of a variety of 

time-differencing schemes, including Euler, backwards differencing and Crank Nicholson. As 

was the case for matrix solvers and boundary conditions, custom numerical schemes may be 

defined. Table 1 summarizes the classes from which custom differencing schemes may be 

derived. 

Table 1: FOAM Base Classes for Numerical Differencing Schemes 

Operator FOAM Base Class 

Convection convectionScheme 

Divergence divScheme 

Laplacian laplacianScheme 

Gradient gradScheme 

Surface normal gradient snGradScheme 

d/dt ddtScheme 

d2/dt2 d2dtScheme 
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In the case of the spatial differencing, a surface interpolation scheme is necessary to 

determine the value at the face. FOAM provides several commonly used surface interpolation 

shemes, including linear, harmonic, upwind and quadratic upwind differencing, amongst 

others. These schemes are derived from  the surfaceInterpolationScheme  class. A custom 

surface interpolation scheme may thus be derived from this base class. 

3.5 Boundary Conditions 

Boundary conditions (BCs) for PDEs are divided into three groups: 

� Dirichlet BC - prescribes a fixed value at the boundary 

� Neumann BC - prescribes a fixed gradient at the boundary 

� A combination of Dirichlet and Neumann boundary conditions 

The FOAM framework makes provision for all of the above. A list of available boundary 

conditions is provided in the FOAM Programmer’s Guide (OpenFOAM PG 2005). FOAM 

does not, however, provide the typical albedo and extrapolated length boundary conditions 

used in neutronic calculations. This issue is addressed in section 4.1.4. 

A description of domain boundaries and their discretized representation has already been 

given in section 3.2. Some description is, however, necessary with regards to the treatment of 

boundaries by the operators and the functions of finiteVolumeMethod  and 

finiteVolumeCalculus . When performing the discretization of equation terms, it is 

necessary to consider the contribution of the boundary faces to the overall face sum in the 

finite-volume discretized equation. Consider the discretization for the Laplacian operator 

given in section 3.3. For this operator, it is necessary to define the gradient ( )bφ∇  at the 

boundary face. For other operators it may be necessary to define the value bφ  at the boundary 

face. Thus any boundary condition needs be able to specify both the face value and face 

gradient as a function of the cell value. For this, FOAM provides the fvPatchField  class, 

which in turn provides the necessary functions to calculate boundary values and gradients for 

a given polyPatchList . Custom boundary conditions may be defined by deriving a new class 
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from the fvPatchField  class. Typical examples of this in FOAM are 

uniformFixedValueFvPatchField  and zeroGradientFvPatchField .  

3.6 Solvers 

The solution of the matrix equation SA =Φ  requires the computationally expensive inversion 

of the coefficient matrix A . In general A  is a sparse matrix, containing a large proportion of 

empty (zero) elements, and therefore the matrix inversion may be accelerated using any 

number of methods, including matrix preconditioning. FOAM provides the 

lduMatrix::solver  class as the basis for inverting matrices, from which specific solvers are 

derived. Several matrix solvers are included in FOAM, for both symmetric and asymmetric 

matrices, including a Gauss Seidel, an agglomerated algebraic multigrid (AMG) solver tuned 

to elliptic problems, an incomplete Cholesky preconditioned biconjugate gradient (BICCG) 

solver, and several other sparse matrix solvers. For a more complete list of available matrix 

solvers, see the FOAM User’s Guide (OpenFOAM UG 2005). Custom solvers may be 

defined by deriving a new class from lduMatrix::solver . 

3.7 Parallel Processing Support 

FOAM supports the domain decomposition method for parallel computing of large problems. 

In essence, this method separates the spatial domain into several smaller meshes. The solution 

is obtained for each mesh, while passing data at the separated faces between processors. Data 

is transferred using the Local Area Multicomputer (LAM) implementation of the standard 

message passing interface (MPI) (Burns et. al. 1994). The procedure of running a case in 

parallel requires three steps; decomposition of the mesh, parallel execution of the decomposed 

case, and reconstructing the solution mesh and data for postprocessing. An important feature 

of FOAM is that, by design, all newly developed applications automatically support parallel 

processing using the domain decomposition method. 
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3.8 User Input 

Neutronic calculations are renowned for having large and complex input and output datasets. 

It is therefore important that input and output be handled in an organized and structured 

manner. This functionality is provided by the FOAM library classes. The inner workings of 

the FOAM library classes will not be discussed but, as an introduction to the structured layout 

of input and output data, a brief description of FOAM cases is provided here. For a more 

detailed case description, the FOAM User Guide (OpenFOAM UG 2005) may be consulted.  

A typical FOAM case is given a name and stored in a directory of the same name. Within this, 

a number of subdirectories are required, specifically the system , constant  and time 

directories. A graphical layout of this structure is given later in 5.2. The system  directory 

contains information regarding the control and type of calculation to be performed. The 

constant  directory contains the mesh and fixed physical properties for the system being 

solved. In a typical nuclear calculation this would include nuclear data such as decay 

constants, fission yields, etc.  

Individual time directories are created at user-specified time intervals, containing individual 

files of data for particular fields and properties. These files are either supplied by the user or 

are written by FOAM during program execution. 

The input and output format of FOAM is designed specifically to be flexible. Data is 

contained in individual files, and is organized into a number of dictionaries. These 

dictionaries have a free format similar to that of C++ code. Essentially each dictionary defines 

a hierarchical data structure, allowing any number of input or output objects to be specified 

using keywords. This approach may be compared to that of other data storage libraries such as 

the Hierarchical Data Format library (HDF5 2007), which uses a multi-object file format and 

allows a variety of different object types to be stored in a single file. 
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3.9 Closure 

In this chapter, the OpenFOAM framework was discussed to a certain level of detail. Included 

in this discussion was an introduction to the finite-volume method as a general equation 

discretization method. An emphasis was placed on the framework’s functionality as it pertains 

to this research. In particular, an attempt was made to provide examples relevant to neutronic 

calculations. In the upcoming chapter 4 a subset of the theory of the TINTE code is rederived 

and suitable solution algorithms are proposed for a time-dependent neutron diffusion code. 

This is done in such a way as to take advantage of the features of OpenFOAM discussed in 

this chapter. 
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4. THEORETICAL DESCRIPTION 

This chapter includes rederivations of a subset of the theory of the TINTE code (Gerwin 

1987). In particular, the theory has been rewritten in a form more suited for implementation in 

OpenFOAM. The derivation of a higher order discretization for the group diffusion equation, 

including delayed neutron treatment, is given in section 4.1. Section 4.2 outlines the 

modelling of saturation fission products such as 135Xe. Section 4.3 describes the very simple 

heat production model assumed. Section 4.4 describes the algorithms and solution methods to 

be used for the numerical solution of the equations of 4.1 through 4.4. 

4.1 The Few-Group Diffusion Equations 

The time-dependent group-diffusion equation for the gth energy group is given below (Stacey 

2001). 
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(4.1) 

where  

gφ  is the gth group flux  

gv  and gD  are the gth group mean neutron velocity and diffusion constant 

respectively 

agΣ  and sgΣ  are the gth group macroscopic absorption and scattering-out cross-

sections respectively 
gg

s
→Σ '  is the macroscopic scattering cross-section from group g’ into group g 

gp,χ  and lgd ,,χ  are the prompt and delayed neutron spectra for the gth energy group 

and lth delayed neutron precursor group 

β  is the delayed neutron fraction per fission 

lλ  and lC  are the lth delayed neutron precursor group decay constant and precursor 

concentrations respectively 

gQ  is a fixed external source 
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The neutron production density term P ′′′  is defined as 

∑Σ=′′′=′′′
'

''

11

g
gfgk

F
k

P φνν  (4.2) 

where 

k  is the effective reactor multiplication constant (k-effective), introduced to ensure 

criticality of the steady-state solution 

ν  is the total neutron yield per fission 

F ′′′  is the fission rate density 

'fgΣ  is the g’th group macroscopic fission cross-section 

4.1.1 Delayed Neutron Treatment 

A small fraction of neutrons produced during fission are emitted with some delay after fission 

has taken place. These neutrons are known as delayed neutrons and they are formed primarily 

through the decay of fission products. Approximately 40 of the 500 total fission product 

nuclides emit delayed neutrons (Ott and Neuhold 1985). The accurate modeling of all these 

delayed neutron emitting nuclides is a complex task and, for this reason, a commonly used 

approximation assumes that the time-dependent integral behaviour of the delayed neutrons is 

well represented by six delayed neutron precursor groups, as is shown in Equation (4.1). Each 

delayed neutron precursor group is characterized by a precursor concentration lC , a decay 

constant lλ  and a group delayed neutron yield per fission ld ,ν . The group delayed neutron 

fraction lβ  is defined as 

ν
ν

β ld
l

,=  (4.3) 

where ν  is the total net neutron yield per fission, defined previously 

dp ννν +=  (4.4) 

Here pν  is the prompt neutron yield per fission and dν  the total delayed neutron yield per 

fission, defined as 

∑
=

=
6

1
,

l
ldd νν  (4.5) 
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The total delayed neutron fraction is defined as the sum of the delayed neutron fraction for all 

precursor groups. 

∑
=

=
6

1l
lββ  (4.6) 

4.1.1.1 Calculating Delayed Neutron Parameters for Fuel Mixtures 

The prompt and delayed neutron yields are dependent on the fissionable nuclide under 

consideration. For materials consisting of a mixture of fissionable nuclides, current 

approaches use a fission rate weighting to calculate the effective delayed neutron yields for 

the mixture. Based on simplified form of the CASMO-3 implementation (Edenius and 

Forssen 1989), the delayed neutron yield for a mixture of isotopes may be written as shown 

below. 

∑

∑
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i
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F,,

,

ν
ν  (4.7) 

∑

∑
′′′

′′′
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i
i

i
ii

F

Fν
ν  (4.8) 

Here, the subscript i  denotes each fissionable isotope and iF ′′′  is the fission rate density for 

each isotope in the material. The delayed neutron fraction may then be calculated using 

Equation (4.3). 

∑

∑
′′′

′′′
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i
ii

i
iild

l F

F

ν

ν
β

,,

 (4.9) 

It should be noted that, as is the case in the TINTE code (Gerwin 1987), no attempt is made to 

correct for the group structure during the calculation of β , i.e. the physical β  is used without 

correction, regardless of group structure. 
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4.1.1.2 Delayed Neutron Data 

The delayed neutron data supplied in the ENDF/B nuclear data libraries (Chadwick et. al. 

2006) is given for each fissionable isotope i . Thus values for il ,λ  and ild ,,ν  are known. In 

order to simplify the calculation, a common set of six decay constants for all fissionable 

isotopes can be chosen, and the values for ild ,,ν  recalculated using least squares regression. 

These modified delayed neutron yields can be obtained from a number of sources. Those 

values used in the TINTE code are given in Table 2, Table 3 and Table 4 (Clifford 2007). 

Table 2: Common Set of Decay Constants for the 6 Delayed Neutron Precursor Groups 

Delayed Neutron 
Group 

Group Decay 
Constant lλ  

1 3.87 

2 1.4 

3 0.311 

4 0.116 

5 0.03174 

6 0.01272 

 

Table 3: Isotope-Dependent Fractional Fission Yield ( β ) of Delayed Neutrons 

Fractional Fission Yield (β ) of Delayed Neutrons [%] 

235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu 

0.6904 2.3981 0.2962 0.4342 1.1693 1.7510 0.2245 0.2850 0.5354 1.0524 

 

Table 4: Isotope- and Group-Dependent Delayed Neutron Fractions ( ββ /l ) 

Fractional Fission Yield ( ββ /l ) for Delayed Neutron Precursor Group [%] 
Group 

235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu 

1 2.6 2.8 0.6 2.6 2.6 4.0 1.2 2.2 0.3 1.0 

2 12.8 18.0 11.9 12.8 12.8 30.5 14.1 15.3 24.7 23.7 

3 40.7 45.6 26.0 40.7 40.7 37.7 31.0 32.8 32.1 39.1 

4 18.8 16.0 27.0 18.8 18.8 13.0 26.3 24.1 22.1 18.9 

5 21.3 14.1 25.8 21.3 21.3 13.6 18.6 18.1 15.2 12.9 

6 3.8 3.5 8.7 3.8 3.8 1.2 8.8 7.6 5.6 4.5 
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4.1.1.3 Delayed Neutron Precursor Concentrations 

The time-dependent behavior of each delayed neutron precursor group may be represented by 

the differential equation shown below (Ott and Neuhold 1985). 

llld
l CF

kdt

dC λν −′′′= ,

1
 (4.10) 

Where ∑∑ Σ=′′′=′′′
g

gfg
i

iFF φ  is the material fission rate density (fission rate per unit 

volume). Here we include the eigenvalue k  to be consistent with the Equation (4.2). 

4.1.1.3.1 Steady-State Case 

For steady-state operation the time-derivative in equation (4.10) is zero and the equation 

reduces to 

F
k

C ldll ′′′= ,

1νλ  (4.11) 

Where F ′′′  is the steady-state fission rate density. 

4.1.1.3.2 Time-Dependent Case 

The derivation that follows is a slightly modified form of that which is applied in the TINTE 

code (Gerwin 1987). A linear time-variation in fission rate and constant delayed neutron yield 

per fission are assumed for a time interval 01 tt −=∆ . The fission rate density is written as 

( ) ( )
∆
−′′′−′′′+′′′=′′′ 0

010

tt
FFFtF ; ( )1,0 , ttt ∈  

Substitution of this into Equation (4.10) allows the time-dependent group concentration to be 

solved for. 

F
k

C
dt

dC
ldl

l ′′′=+ ,

1νλ  
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The above equation is an ordinary differential equation of the first kind ( ) ( )tqCtpC ll =+ɺ . 

The solution for ( )tCl  for time 0tt >  may be determined using integrating factors. 
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λ
 

The integrating factor ( )tµ  is found as follows. 
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Assuming lλ  constant over the time-interval, this may be rewritten to solve for ( )tCllλ . 
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The final expression for the precursor concentration at the end of the time interval becomes 
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For the discretization of the time-dependent diffusion equation (in upcoming section 4.1.2), 

an accurate expression is required for the interval mean precursor concentrations. The reason 

for this is discussed in the upcoming section. The interval mean neutron production is 

calculated by a time integration of equation (4.12) as follows. 
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And finally 
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4.1.2 Time Discretization of the Few-Group Diffusion Equations 

The non-discretized form of the few-group diffusion equation is given by Equation (4.1). The 

production P ′′′  may be replaced by the fission rate F ′′′ , using the previous definition 

F
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. 

( )

Gg
QC

F
k

D
tv

g
l

lllgd

pgp
gg

g
gg

sgsgaggg
g

g

,,1
,

11

6

1
,,

,
'

'
'

…=
++

′′′+Σ+Σ+Σ−∇∇=
∂

∂

∑

∑

=

≠

→

λχ

νχφφφ
φ  

In considering a choice of time-discretization for the above equation, one must consider the 

accuracy requirements for each physical process taking place. We note that the required time 

intervals may vary from fractions of a second to minutes. Similarly, we note that the six 

delayed neutron groups lie within this range of times, therefore it is important to treat the 

delayed neutron terms with some accuracy. The derivation that follows, similar to that used in 

TINTE (Gerwin 1987), is a manipulation of the diffusion equation into a time-discretized 

form, which pays particular attention to the delayed neutron treatment and assumes an 

average rate of change for the time interval. The final outcome of this derivation is presented 

in Equations (4.21) through (4.24). 
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We further assume that 
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and 
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We may now write 
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Because the average delayed neutron precursor concentrations lC  are known (derived 

previously in section 4.1.1), we replace the term 
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Equation (4.15) can now be used to solve for ( )1
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v g
g
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Given that ( ) 0
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=φɺ , the equation may now be reduced. 
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This may be expanded using the definition for 1Reg  in Equation (4.16). 
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Three factors may defined from the given equation. 

� The new prompt production term is given by 
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In terms of the delayed neutron fraction, this may be written as 
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� The old prompt production term is given by 
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In terms of the delayed neutron fraction, this may be written as 
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� The delayed neutron source term is given as 
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The fully time-discretized group diffusion equation with delayed neutron feedback may now 

be written. 
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This may be written in a simplified form  
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where 

fggsgagg k
A Σ−Σ+Σ= νζ 11  (4.22) 

'
1'
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1
, fgg

gg
sgg k

C Σ+Σ= →
→ νζ… , gg ≠'  (4.23) 

ggdgg QQF
k

S +−′′′= ,0
0 1νζ  (4.24) 

Equations (4.21) through (4.24) represent the fully time-discretized set of multi-group 

diffusion equations and are suitable for direct implementation in FOAM. 

4.1.2.1 Steady-State Case 

The steady-state forms of equations (4.18), (4.19) and (4.20) may be written by taking the 

limit as the time interval ∆  tends to infinity, yielding the following. 
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4.1.3 The In-cell Spectrum Solution 

In order to apply the predictor-corrector algorithm, which is discussed later in section 4.4.1.3, 

a coupled solution for the group fluxes is required in each mesh cell. The derivation that 

follows yields a matrix equation which may be used to solve for the coupled solution of the 

group fluxes in a control volume,  assuming a fixed leakage through the control volume 

surface. 
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If we assume that the spatial dependence of the neutron flux ( )ggD φ∇•∇  may be linearised 

by defining buckling terms, a buckling term gB  may be used to replace the Laplacian 

operator such that 

( ) ( ) ggggg BDD φφ 2≈∇•∇  (4.28) 

Equation (4.21) may therefore be rewritten as 
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In matrix form, this becomes 
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The above matrix equation is similar in form to the coupled equations used for spectrum 

calculations. The solution to the set of equations is unstable in reflectors, and other regions 

with low fission rates (Gerwin 1987). In these regions, the absorption of neutrons is 

significantly greater than the production. In order to obtain a non-zero solution this must be 

transformed into a fixed source problem. As a first attempt to bypass this problem, the cell 

neutron leakage is included as an explicit source rather than through implicit linearised 

buckling values. This assumption may be applied for all cells within the solution domain, 

regardless of whether they contain fuel or not. Thus the in-cell solution, in matrix form, 

becomes 
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where 12
gggg BDL φ= , the leakage based on the guess value for 1

gφ . 

4.1.4 Eigenvalue Calculation 

The effective reactor multiplication constant (k-effective) is generally defined as the ratio of 

neutron production to neutron losses. In the presence of delayed neutrons, the definition is 

somewhat changed. We therefore consider the expanded form of Equation (4.21) in order to 

calculate this value.  
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This is rearranged to solve for k . 
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This gives a definition for the local k-effective k
~

. The global k-effective is calculated using 

domain and energy group integrated forms of the terms in the expression above. 
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We note that the scattering terms between energy groups cancel each other, i.e.  
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The expression for k  therefore becomes 
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We are generally only concerned with calculating k-effective for the steady-state case. In this 

case the time-dependent term is zero. Also, the volume integral can be replaced by a discrete 

sum over the mesh elements. 

global
d
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PR

P
k

+
=  (4.31) 

The global prompt neutron production rate is defined as 
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The global neutron loss rate is defined as 
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The global delayed and fixed neutron production rate is defined as 
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In the above equations, the subscript j  indicates the mesh cells. 

4.1.5 Boundary Conditions 

The extrapolated length and albedo boundary conditions (BCs), commonly used in neutron 

diffusion calculations, specify the neutron current at the boundary as a linear function of the 

neutron flux in the cell lying adjacent to the boundary. These cannot easily be defined using a 

combination of Dirichlet or Neumann BCs, which require fixed values or fixed gradients at 

the boundary. A mathematical description for each of these BCs is derived in the next 

sections, in a form which can be directly implemented in FOAM. 

4.1.5.1 The Extrapolated Length Boundary Condition 

We consider a discrete unstructured mesh cell P, with an edge coinciding with the domain 

boundary. Beyond this boundary, a vacuum is assumed to exist. A widely used approximation 

to this vacuum boundary for diffusion calculations is the extrapolated length boundary 

condition (Stacey 2001). The extrapolated length boundary specifies that the neutron flux will 
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vanish at some point beyond the boundary. Thus the neutron flux is zero at a given distance 

extrapλ  past the boundary, where Dextrap 37104.0 ×=λ . The boundary condition is depicted in 

Figure 2. 
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Figure 2: The Extrapolated Length Boundary Condition 

The gradient at the boundary, ( )Bφ∇ , is numerically approximated as 

( )
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−
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This must correspond with the gradient from point B to point O. 
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Rearranging this yields the neutron flux at the boundary. 

P
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φ

∆+
=  (4.35) 

The gradient at the boundary may now be written as 

( ) P
PBextrap

B x
φ

λ
φ

∆+
−=∇ 1

 (4.36) 

Equations (4.35) and (4.36) are sufficient to fully define the extrapolated length boundary 

condition in FOAM. 
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4.1.5.2 The Albedo Boundary Condition 

The albedo α , the ratio of outgoing to incoming neutron current at the boundary, may be 

used to determine the neutron flux within a mesh according to the following relationship 

(Stacey 2001). 
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Thus the flux gradient at the boundary may be written directly as 
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Rearranging this yields the neutron flux at the boundary. 
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(4.37) 

The gradient at the boundary may now be written.  
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(4.38) 

From the above equations, it is possible to relate the albedo boundary condition to an 

equivalent extrapolated length albedoλ  (see Section 4.1.5.1) using the expression 
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 (4.39) 

Equations (4.37) and (4.38) can therefore be rewritten as 

P
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albedo
B x

φ
λ

λφ
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( ) P
PBalbedo

B x
φ

λ
φ

∆+
−=∇ 1

 (4.41) 

Equations (4.40) and (4.41) relate directly to Equations (4.35) and (4.36). 

4.2 Iodine, Xenon and Other Neutron Poisons 

Certain fission products (Stacey 2001) will act as neutron absorbers and their formation tends 

to reduce the global reactor multiplication constant (k-effective). Some of these fission 

products are known as saturating fission products because their half-lives are sufficiently 

short that an equilibrium is reached between their production, decay and absorption during 

normal reactor operation. These isotopes will influence reactor operation in many cases such 

as reactor startup, shutdown and power level changes and therefore their influence must be 

taken into account. Of the saturating fission products, the isotopes 135Xe and 149Sm are 

generally considered the most important. 

Xenon-135 has a large thermal absorption cross-section of approximately b6106.2 ×  and is 

produced directly from fission and from the decay of 135I. 135I is produced from the decay of 

135Te, which is a direct fission product. The half-life of 135Te (19 s) is sufficiently small, that a 

common approximation is to assume the 135I is formed directly from fission with yield 

TeI γγ =  (Stacey 2001). 

Samarium-149 has a large thermal absorption cross-section of approximately b4104×  and is 

produced by the decay of 149Pm, which in turn is formed after the decay of 149Nd. The half-

life of 149Nd is sufficiently small (1.7 h) that 149Pm can be assumed to be a direct fission 

product with yield NdPm γγ = . 

In the cases of both 135Xe and 149Sm, as well as the isotopes 151Sm and 157Gd, the decay chain 

may be represented as shown in Figure 3. Note that in this context, we refer to the production 

and decay of the generic isotopes XI → , which can refer to any isotope pair that may be 

modeled according to Figure 3.  
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I

X

β - λI

X’
(n,γ)

β - λX

σX

X’’  

Figure 3: Transmutation Decay chain for a Generic Neutron Poison 

The time-dependent concentration of the generic isotopes X  and I  in the above figure may 

be written in differential equation form. 

( ) ( ) ( )tItFtI
dt

d
II λγ −′′′=  (4.42) 

( ) ( ) ( ) ( ) ( )tXttItFtX
dt

d

g
ggXXIX 










+−+′′′= ∑ φσλλγ ,  (4.43) 

The TINTE code models what are considered to be the four important isotope pairs in short 

term HTGR dynamics, namely XeI 135135 → , PmSm 149149 → , PmSm 151151 →  and 

GdEu 157157 → . Table 5 summarizes the decay constants for these isotope pairs as 

implemented in TINTE. 

Note that no assumption has been made regarding the fission yields Xγ  and Iγ , or regarding 

the group-wise microscopic absorption cross-section of the daughter isotope gX ,σ . These 

values are assumed to be provided as calculation input. 
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Table 5: Decay Constants of Important Neutron Poisons Decay Chains 

Isotope Pair Parent Isotope Daughter Isotope 

 Isotope (I) 
Decay Constant 

Iλ  [s-1] 
Isotope (X) 

Decay Constant 

Xλ  [s-1] 

1 I-135 2.88E-5 Xe-135 2.12E-05 

2 Pm-149 3.63E-6 Sm-149 1.00E-30* 

3 Pm-151 6.88E-6 Sm-151 5.75E-09 

4 Eu157 1.26E-5 Gd-157 1.00E-30* 

 

4.2.1 Steady-State Case 

For the steady-state case, the time-derivatives in equations (4.42) and (4.43) are zero. The 

steady-state concentration of the parent isotope I may be written. 

FI
I

I ′′′=
λ
γ

 (4.44) 

This may be substituted into equation (4.43) to yield the steady-state concentration of the 

daughter isotope X . 

( )
FX

g
ggXX

IX ′′′
+

+
=

∑ φσλ
γγ

,

 (4.45) 

4.2.2 Time-Dependent Case 

We assume a constant fission rate for the time interval 01 tt −=∆ . 

( ) ( )012

1
FFFtF ′′′+′′′=′′′=′′′ , ( )1,0 , ttt ∈  

                                                 

* These isotopes are stable. 
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Substitution of this into Equation (4.42) allows the time-dependent concentration of the parent 

isotope I  to be solved for. 
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At the end of the time interval ( 1tt = ) 
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101  (4.46) 

 

A solution may now be found for the daughter isotope X , starting with equation (4.43). We 

define 

∑+=
g

ggXX φσλλ ,2  (4.47) 

In the above definition, gX ,σ  and gφ  are assumed constant over the time interval. Equation 

(4.43) may now be written as 
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This is an ordinary differential equation of the first kind ( ) ( )tqXtpX =+ɺ . The solution for 

( )tX  for time 0tt >  may be determined using integrating factors. 
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The integrating factor ( )tµ  is found as follows. 

( ) ( )020
2

0
'''

tt
dtdttp

eee
t

t

t

t −=∫=∫= λλ
µ  

The solution for ( )tX  becomes 

( )
( ) ( ) ( ) ( ) ( )[ ] ( )

( )

( ) ( ) ( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( ) ( ) ( )( ){ }∫ ∫

∫

∫∫

−−−−−

−−−−−

−

−−−

′′′−+′′′++=

′′′−+′′′++=

+′′′−+′′′+
==

t

t

t

t

tt
II

tt
IX

tt

t

t

tt
IIIX

tttt

tt

t

t

tt
IIIX

ttt

t

dteFIdteFtXe

dteFIFetXe

e

tXdteFIFedttq
tX

I

I

I

0 0

020202

0

00202

02

0

002

0

''

'

'

'
0

'
0

'
00

00
'

λλλλ

λλλ

λ

λλ

γλγγ

γλγγ

γλγγ

µ

µ

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ){ }∫ ∫
−−−−− ′′′−+′′′++=∴

t

t

t

t

tt
II

tt
IX

tt dteFIdteFtXetX I

0 0

020202 '' '
0

'
0

λλλλ γλγγ  

The integrals may be evaluated and the equation simplified. 
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At the end of the time interval ( 1tt = ) the daughter isotope concentration becomes 
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 (4.48) 

4.3 Power Production 

The time-dependent power production, including decay heat production, were not considered 

for the FOAM implementation. As an approximation, all heat produced is assumed to be 

prompt and proportional to the fission rate. 

FEQ f ′′′=′′′  (4.49) 

where Q ′′′  is the power density and fE  the energy per fission. 
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4.4 Solution Algorithms 

In the preceding sections 4.1 through 4.3, a set of equations has been presented in a form 

suitable for implementing in FOAM. It is at this point that we now consider the solution 

strategy and algorithms that are required for the implementation. Section 4.4.1 considers the 

coupled solution of the neutron diffusion equation. Sections 4.4.2 and 4.4.3 introduce the 

complete algorithms for the steady-state and transient calculations respectively, and 

section 4.4.4 describes the inner iteration, i.e. the coupled calculation of neutron flux and 

neutron poison concentrations. 

4.4.1 The Solution of the Time-Dependent Few Group Diffusion Equations 

The implicit solution of the set of equations defined by equation (4.21) is not straightforward 

using the present FOAM framework. While the framework readily solves the gth group 

equation, the framework does not directly handle the coupling between the different energy 

group equations. The addition of this direct coupling to the framework is work in progress 

(Jasak 2007). This is discussed further in section 6.4.2. In the present absence of this feature 

an implicit solution for all energy groups requires iteration, explicitly updating the source 

contribution ∑
≠

→
gg

gggB
'

1
'' φ  at each step. 

The coupled solution of the few-group diffusion equations requires a suitable algorithm that 

will ensure stability up to time intervals in the order of 60 s, using the present framework’s 

features. This stability cannot be easily achieved using an explicit coupling scheme. The 

equations for the fast energy groups are a factor of approximately a thousand stiffer than the 

thermal group equations. The coupling of these equations therefore poses a problem. This 

stiffness difference is due to the differences in mean neutron velocity for fast and thermal 

neutrons. 

Similarly, the between-group coupling (neutron scattering) forms a relatively large proportion 

of the neutron source terms in each equation. Therefore one cannot assume that spectrum 

effects are of secondary importance to spatial effects. This presents a problem when 
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implementing the few-group diffusion equation in FOAM. The framework is specifically 

tailored towards problems where spatial effects dominate.  

The solution of the one-group time-dependent diffusion equation may be carried out very 

efficiently using just one line of code. 

solve(1/v*fvm::ddt(phi) – fvm::laplacian(D,phi) + A *phi = S); 

For more than one energy group, however, because there is currently no implicit block solver 

in FOAM, a suitable algorithm for the implicit solution of the group fluxes is required. Some 

proposed options for this implicit solution are discussed in the upcoming sections. 

4.4.1.1 Explicit (Forward Difference) Group Flux Coupling 

The simplest algorithm is an explicit coupling of the group fluxes. Here the out-of-group 

source terms are assumed to be dependent only on the start-of-interval fluxes 0'gφ , i.e. 

∑
≠

→
gg

gggB
'

0
'' φ  

This approximation requires no iteration but is only stable for small time intervals. The 

method also has limited accuracy, further requiring small time intervals. 

4.4.1.2 Implicit (Backward Difference) Group Flux Coupling 

The numerical instability of the time-integration can be ensured by using the backward-

difference algorithm. Here the out-of-group source terms are assumed to be dependent on the 

end-of-interval fluxes 1
'gφ , i.e. 

∑
≠

→
gg

gggB
'

1
'' φ  

The problem, however, arises that the end of interval fluxes are not known and therefore an 

iterative scheme is necessary to obtain a coupled solution. A spatially dependent source term 

is assumed. For the first iteration, this is assumed to be based on the start-of-interval fluxes. 

Starting with the fastest flux group and working down to the slowest group, the group 
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diffusion equations are solved one-by-one to obtain an updated guess for the end-of-interval 

group fluxes. The updated guess fluxes are then used to obtain an updated guess of the source 

terms and the process is repeated until convergence is obtained. 

This algorithm is represented below using pseudo-code. 

Guess group source terms 
while not converged 
 for g=1,2,..., number of energy groups 
  solve gth group diffusion equation 
 end 
 update group source terms 
 
 check convergence 
end 

 

It is possible to improve the convergence of the implicit algorithm using a number of 

methods, including: 

� If the source terms are updated directly following the spatial solution of each group’s 

fluxes, the updated source terms propagate faster into the equation system and 

convergence can be improved in this way. 

� Successive overrelaxation may be used to improve the rate of convergence. Here, a 

relaxation factor α  is chosen ( )20 << α . Each updated group flux is calculated as 

( ) 0*11 1 ggg φαφαφ −+=  

where 1
gφ  is the updated group flux, and *1

gφ  the solution to the gth group diffusion 

equation. The choice of factor α  greatly affects the rate of convergence. If 1=α , this 

method reduces to the standard backwards differencing scheme. 

If we consider the solution of the diffusion equation for a single energy group, assuming the 

between group terms to be fixed sources, it is clear that this single equation gives an implicit 

spatial solution, while the energy-dependence is treated explicitly. Thus, this algorithm is 

referred to as spatially-implicit. 
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The explicit treatment of the energy-dependence results in very poor numerical stability, 

largely due to the high stiffness of the fast energy group equations in relation to the thermal 

group equations. This numerical instability may only be improved using a more advanced 

energy coupling. 

4.4.1.3 Predictor-Corrector Algorithm 

The stability problems associated with the spatially-implicit algorithm of section 4.4.1.2 may 

be improved by coupling this with in-cell spectrum calculations (refer to section 4.1.3) for 

each mesh cell to obtain a predictor-corrector type algorithm. The spectrum calculation 

implicitly couples the energy groups, and treats the spatial coupling explicitly (through 

buckling terms). It is thus referred to as an energy-implicit solution. 

The predictor-corrector algorithm is represented below using pseudo-code. 

Guess group source terms 
while not converged 
 for g=1,2,..., number of energy groups 
  solve for gth energy group fluxes (spatially-impl icit) 
 end 
 
 update buckling terms 
 
 for i=1,2,..., number of mesh cells 
  in-cell spectrum solution for ith mesh cell (ener gy-implicit) 
 end 
 
 update group source terms 
 
 check convergence 
end 
 

This simple predictor-corrector algorithm is used as an initial attempt to obtain a stable multi-

group flux solution. The implementation of a more advanced algorithm or block coupled 

solution is considered outside of the scope of this research. 

4.4.2 Steady-State Eigenvalue Calculation 

A pseudo-transient algorithm is used to calculate the eigenvalue and steady-state neutron 

fluxes, as in the case of the TINTE code. Initially the neutron flux profile is guessed. This flux 

profile is assumed to be user-supplied. An initial eigenvalue (k-effective) of unity is assumed.  
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An artificial time interval is then chosen and the updated neutron fluxes at the end of this 

time-interval are calculated. These updated neutron fluxes are then used to calculate an 

updated eigenvalue. At each step, the reactor power is normalized to a user-specified power 

level. With iteration, the global reactor power, neutron fluxes and eigenvalue will converge to 

the steady-state values. This algorithm is depicted in Figure 4. 

4.4.2.1 Reducing the Number of Iterations to Convergence 

The TINTE code has an optimized controller which ‘steers’ the steady-state calculation, in 

order to reduce the number of iterations required for convergence. In order to simplify the 

FOAM implementation, only one optimizing measure is applied. The mean neutron velocities 

of all energy groups are assumed unity for the duration of the steady-state calculation. This 

eliminates the problem of stiffness differences between the diffusion equations for fast and 

thermal energy groups, allowing large artificial time intervals to be chosen. 

4.4.3 Time-Dependent Calculation 

A time-dependent calculation is an initial-value problem, and can only be carried out once the 

reactor eigenvalue is known, and the steady-state calculation therefore precedes this. The 

time-dependent algorithm is illustrated in Figure 5. The basic iterative strategy of the 

algorithm shows only small differences from the steady-state algorithm of section 4.4.2. 

These differences include the following. 

� No normalization of the reactor power is performed. 

� The eigenvalue (k-effective) is not calculated. The value is kept constant following the 

steady-state calculation. 

� No outer iteration is required for each time-interval. 
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Figure 4: Algorithm for the Steady-state Eigenvalue Calculation 
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Figure 5: Algorithm for Time-Dependent Calculation 
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4.4.4 The Inner Iteration 

Both steady-state and time-dependent algorithms require a simultaneous solution for the 

neutron flux and strong absorber isotope concentrations. For this, an inner iteration is used to 

obtain converged values. 

 

 
 

Figure 6: Algorithm for the Inner Iteration 

4.5 Closure 

In this chapter, a set of equations was presented in a form suitable for direct implementation 

in OpenFOAM. These equations, based on the TINTE code, include the discretized multi-

Calculate diffusion equation coefficients, Equations 
(4.22), (4.23) and (4.24) 

Calculate updated guess of isotope concentrations at end of time 
interval, Equations (4.44) and (4.45) (Steady-state) or (4.46) and 

(4.48) (Time-dependent) 

Calculate updated guess of neutron fluxes at end of time 
interval, solve the multi-group diffusion equation, 

Equation (4.21) 

Check convergence based on isotope concentration and 
neutron flux residuals 

Converged ? 



 

59 

group diffusion equation, and equations for delayed neutron treatment, fission product 

poisoning and power production. A set of algorithms for the neutron flux solution, and for full 

steady-state and transient solutions were proposed. The OpenFOAM implementation, based 

on the equations and algorithms of this chapter,  is discussed in chapter 5. 



 

60 

5. IMPLEMENTATION DESCRIPTION 

Based on the equations and algorithms proposed in chapter 4, a FOAM multi-group diffusion 

solver, called diffusionFoam, was coded in C++. Significant effort was devoted to ensuring 

that an object-oriented approach to the coding was followed. Specifically, the code was 

modularized into a number of classes. In the interest of being concise, detailed information on 

all aspects of the implementation have not been provided, however in certain instances 

examples have been provided to illustrate the methods used and to emphasise the advantages 

of the FOAM framework. 

5.1 Class Structure 

In total, nine custom classes were created to model different aspects of the nuclear calculation 

being performed. An attempt has been made, as far as possible, to separate the various nuclear 

phenomena being modelled. In this way future development will allow different models for 

each phenomena to be applied, without introducing unnecessary complication. Class diagrams 

for the diffusionFoam application are given in Figure 7 and Figure 8. A cross-reference 

between the equations of chapter 4 and the diffusionFoam class and namespace members is 

given in Table 6. 

5.1.1 nuclearField Class 

The nuclearField  class is primarily concerned with global nuclear parameters, such as k-

effective and global power production. It contains several child fluxGroup  objects, each 

responsible for the storage of the spatially- and time-dependent scalar neutron flux and flux 

leakage for a single broad group. Future development will likely see these broad group fluxes, 

as well as calculations such as neutron production, fission rates, total leakage, among others 

moved as children into separate objects. Similarly, at present, power production is calculated 

within this class. If decay and/or non-local power production is to be taken into account this 

should be included in a separate class. 
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IOdictionary

nuclearField

- Ef_:  volScalarField
- F_:  volScalarField
- fixedSrc_:  dimensionedScalar
- globalDelayed_:  dimensionedScalar
- globalLoss_:  dimensionedScalar
- globalPower_:  dimensionedScalar
- globalProd_:  dimensionedScalar
- groups_:  PtrList<fluxGroup>
- keff0_:  dimensionedScalar
- keff_:  dimensionedScalar
- mesh_:  fvMesh& {readOnly}
- omega_:  dimensionedScalar
- P_:  volScalarField
- powerDensity_:  volScalarField
- steadyStatePower_:  dimensionedScalar

+ F() : volScalarField& {query}
+ fixedSrc() : dimensionedScalar& {query}
+ globalPower() : dimensionedScalar& {query}
+ groups() : PtrList<fluxGroup>& {query}
+ groups() : PtrList<fluxGroup>&
+ keff() : dimensionedScalar& {query}
+ keff0() : dimensionedScalar& {query}
+ mesh() : fvMesh& {query}
+ normalizePower() : void
- nuclearField(nuclearField&)
+ nuclearField(fvMesh&, crossSections&)
+ ~nuclearField()
+ omega() : dimensionedScalar& {query}
- operator=(nuclearField&) : void
+ P() : volScalarField& {query}
+ storeAsOld() : void
+ updateFissionRate() : void
+ updateKEffective(delayNeutrons&, fissionProducts&, bool) : void
+ updateLeakage() : void
+ updateNeutronProduction() : void
+ updatePowerDensity() : void

crossSection

- A_:  volScalarField
- chi_:  volScalarField
- D_:  volScalarField
- F_:  volScalarField
- index_:  label
- mesh_:  fvMesh& {readOnly}
- nuF_:  volScalarField
- S_:  PtrList<volScalarField>
- v_:  volScalarField

+ A() : volScalarField& {query}
+ chi() : volScalarField& {query}
- crossSection(crossSection&)
+ crossSection(label, label, fvMesh&, dictionary&)
+ ~crossSection()
+ D() : volScalarField& {query}
+ F() : volScalarField& {query}
+ mesh() : fvMesh& {query}
+ nuF() : volScalarField& {query}
- operator=(crossSection&) : void
+ S() : PtrList<volScalarField>& {query}
+ update() : void
+ v() : volScalarField& {query}

IOdictionary

crossSections

- groups_:  PtrList<crossSection>
- mesh_:  fvMesh& {readOnly}

- crossSections(crossSections&)
+ crossSections(fvMesh&)
+ ~crossSections()
+ groups() : PtrList<crossSection>& {query}
+ mesh() : fvMesh& {query}
- operator=(crossSections&) : void
+ update() : void

delayNeutronGroup

- beta_:  volScalarField
- delay_:  delayNeutrons& {readOnly}
- index_:  label
- lambda_:  dimensionedScalar
- lambdaC_:  volScalarField

+ beta() : volScalarField& {query}
- delayNeutronGroup(delayNeutronGroup&)
+ delayNeutronGroup(label, delayNeutrons&, dictionary&)
+ ~delayNeutronGroup()
+ lambda() : dimensionedScalar& {query}
+ lambdaC() : volScalarField& {query}
+ lambdaC() : volScalarField&
- operator=(delayNeutronGroup&) : void

IOdictionary

delayNeutrons

- factor0_:  volScalarField
- factor1_:  volScalarField
- groups_:  PtrList<delayNeutronGroup>
- nuclField_:  nuclearField& {readOnly}
- P_:  volScalarField

- delayNeutrons(delayNeutrons&)
+ delayNeutrons(nuclearField&)
+ ~delayNeutrons()
+ factor0() : volScalarField& {query}
+ factor1() : volScalarField& {query}
+ groups() : PtrList<delayNeutronGroup>& {query}
+ mesh() : fvMesh& {query}
+ nuclField() : nuclearField& {query}
- operator=(delayNeutrons&) : void
+ P() : volScalarField& {query}
+ updateConcentrations(bool) : void
+ updateProduction(bool) : void

IOdictionary

fissionProducts

- isotopes_:  PtrList<isotope>
- nuclField_:  nuclearField& {readOnly}
- sigma_:  volScalarField

- fissionProducts(fissionProducts&)
+ fissionProducts(nuclearField&)
+ ~fissionProducts()
+ isotopes() : PtrList<isotope>& {query}
+ mesh() : fvMesh& {query}
+ nuclField() : nuclearField& {query}
- operator=(fissionProducts&) : void
+ sigma() : volScalarField& {query}
+ updateConcentrations(bool) : void

fluxGroup

- crossSection_:  crossSection& {readOnly}
- index_:  label
- leakage_:  volScalarField
- phi_:  volScalarField

- fluxGroup(fluxGroup&)
+ fluxGroup(label, crossSection&, dictionary&)
+ ~fluxGroup()
+ leakage() : volScalarField& {query}
+ leakage() : volScalarField&
- operator=(fluxGroup&) : void
+ phi() : volScalarField& {query}
+ phi() : volScalarField&
+ scalePower(scalar) : void
+ sigma() : crossSection& {query}
+ updateLeakage() : void

isotope

- conc_:  volScalarField
- lambda_:  dimensionedScalar
- name_:  word
- parentIndex_:  label
- parentName_:  word
- products_:  fissionProducts& {readOnly}
- sigma_:  volScalarField
- yield_:  volScalarField

+ conc() : volScalarField& {query}
+ conc() : volScalarField&
+ hasParent() : bool  {query}
- isotope(isotope&)
+ isotope(word&, fissionProducts&, dictionary&)
+ ~isotope()
+ lambda() : dimensionedScalar& {query}
+ name() : word& {query}
- operator=(isotope&) : void
+ parent() : label  {query}
+ sigma() : volScalarField& {query}
+ yield() : volScalarField& {query}

0..*

-products_ 1

0..*

-delay_ 1

1

-crossSection_ 1

0..*

-nuclField_ 1

0..*

-nuclField_ 1

0..*

1
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0..*

+nuclearField_

1

 

Figure 7: The diffusionFoam Class Structure 
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fvPatchField

Type:class

extrapolatedLengthFv PatchField

- length_:  scalarField
- phiName_:  word
+ TypeName:  int

+ clone() : tmp<fvPatchField<Type> > {query}
+ clone(Field<Type>&) : tmp<fvPatchField<Type> > {query}
+ evaluate() : void
+ extrapolatedLengthFvPatchField(fvPatch&, Field<Type>&)
+ extrapolatedLengthFvPatchField(fvPatch&, Field<Type>&, dictionary&)
+ extrapolatedLengthFvPatchField(extrapolatedLengthFvPatchField<Type>&, fvPatch&, Field<Type>&, fvPatchFieldMapper&)
+ extrapolatedLengthFvPatchField(extrapolatedLengthFvPatchField<Type>&, Field<Type>&)
+ gradientBoundaryCoeffs() : tmp<Field<Type> > {query}
+ gradientInternalCoeffs() : tmp<Field<Type> > {query}
+ length() : scalarField&
+ length() : scalarField& {query}
+ operator*=(fvPatchField<scalar>&) : void
+ operator*=(Field<scalar>&) : void
+ operator*=(scalar) : void
+ operator+=(fvPatchField<Type>&) : void
+ operator+=(Field<Type>&) : void
+ operator+=(Type&) : void
+ operator-=(fvPatchField<Type>&) : void
+ operator-=(Field<Type>&) : void
+ operator-=(Type&) : void
+ operator/=(fvPatchField<scalar>&) : void
+ operator/=(Field<scalar>&) : void
+ operator/=(scalar) : void
+ operator=(UList<Type>&) : void
+ operator=(fvPatchField<Type>&) : void
+ operator=(Type&) : void
+ snGrad() : tmp<Field<Type> > {query}
+ updateCoeffs() : void
+ valueBoundaryCoeffs(tmp<scalarField>&) : tmp<Field<Type> > {query}
+ valueInternalCoeffs(tmp<scalarField>&) : tmp<Field<Type> > {query}
+ write(Ostream&) : void {query}

 

Figure 8: The diffusionFoam Class Structure (continued) 

 

Table 6: diffusionFoam Member Function and Equation Cross-References 

Reference Equation Class or Namespace Member 

(4.2) nuclearField::updateFissionRate 

nuclearField::updateProduction 

(4.11), (4.13) delayNeutrons::updateConcentrations 

(4.22), (4.23), (4.24) Foam::innerIteration 

(4.18), (4.19), (4.20),  

(4.25), (4.26), (4.27) 

delayedNeutrons::updateProduction 

(4.21) Foam::transportSolve 

Foam::groupSolve 

(4.31) nuclearField::updateKEffective 

(4.32) extrapolatedlengthFvPatchField::evaluate 

extrapolatedlengthFvPatchField::valueInternalCoeffs  

extrapolatedlengthFvPatchField::valueBoundaryCoeffs  

(4.33) extrapolatedlengthFvPatchField::snGrad 

extrapolatedlengthFvPatchField::gradientInternalCoe ffs  

extrapolatedlengthFvPatchField::gradientBoundaryCoe ffs  

(4.44), (4.45), (4.46), (4.48) fissionProducts::updateConcentrations 

(4.49) nuclearField::updatePowerDensity 
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5.1.2 crossSections Class 

The crossSections  class is primarily a container class for the neutron cross-sections and 

other diffusion related constants. It is invisaged that this class will ultimately include more 

advanced cross-section library functionality such as the collapsing of cross-sections, etc. A 

single crossSection  object is defined for each broad energy group. Each crossSection  

object is responsible for supplying the spatially-dependent macroscopic absorption, fission, 

nu-fission, and scattering cross-sections, as well as diffusion constant, mean neutron velocity 

and fission spectrum for a single broad energy group. Currently, fixed value cross-sections are 

used but the structure is in place for more advanced cross-section calculations to be 

implemented. 

5.1.3 delayNeutrons Class 

The delayNeutrons  class is responsible for providing the delayed neutron production terms 

for the neutron diffusion equation. These include steady-state and transient spatial prompt 

neutron production factors and the delayed neutron production. The class contains one or 

more delayNeutronGroup  objects, representing each of the delayed neutron precursor 

groups. Each precursor group object is responsible for updating its own precursor 

concentration. 

5.1.4 fissionProducts Class 

The fissionProducts  class is responsible for providing updated macroscopic absorption 

cross-sections for, and calculating updated concentrations of fission products. One or more 

child isotope  objects are defined, each representing a single isotope. Each isotope object is 

responsible for calculating its updated concentration and macroscopic neutron absorption 

cross-sections. The current implementation is limited to the iodine and xenon type neutron 

poisons, with only a single parent and daughter isotope. The class structure is such that 

detailed decay chain calculations could potentially be carried out.  
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5.1.5 extrapolatedLengthFvPatchField Class 

This class is derived from the FOAM fvPatchField  class, providing the underlying code for 

an extrapolated length boundary condition, identified by the keyword extrapolatedLength  

in diffusionFoam. The internal operation of the class will not be discussed, however, it is 

necessary to explain that each extrapolatedLength  boundary condition is responsible for 

updating its own extrapolated length values, given the name of a volScalarField  from 

which to obtain diffusion length values (extrapolatedLengthFvPatchField::phiName_ ). 

This would, as a general rule, be the same name as the diffusion length associated with each 

crossSection  object (crossSection::D_ ), although this is not enforced in the code. 

While such flexibility may seem redundant in this case, since the extrapolated length will 

always be a function of diffusion length, it serves to illustrate how more complex coupling 

schemes may be achieved at mesh boundaries using FOAM. 

5.2 User Input 

A brief description of FOAM input and output is provided in section 3.8. A graphical 

representation of the structural layout of a typical diffusionFoam case is given in Figure 9. 

The diffusionFoam implementation takes full advantage of the input/output libraries of 

FOAM. In particular, each of the classes described in section 5.1 is assigned a unique 

dictionary in the constant directory, with the same name as the class. This dictionary contains 

all the necessary initialization data for the class. Consider, as an example, the following input 

dictionary for the fissionProducts  class. 
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isotopes 
( 
    Xe135 
    { 
        parent       I135; 
        lambda       lambda      [0 0 -1 0 0 0 0]   2.116E-5; 
        yield        yield_Xe135; 
        sigma        sigma_Xe135; 
    } 
 
    I135 
    { 
        parent       none; 
        lambda       lambda       [0 0 -1 0 0 0 0]   2.883E-5; 
        yield        yield_I135; 
        sigma        sigma_I135; 
 
    } 
} 
 

Here, we can see that the decay chain of the isotopes 135Xe and 135I are defined, including 

their decay constants and the names of the fission yield fraction and microscopic absorption 

cross-section dictionaries for each isotope. Thus, any number of isotopes may be defined in an 

easily understood and readable format. 

5.3 Known Issues 

For reasons discussed in section 4.4, the simple predictor-corrector arrangement proposed in 

section 4.4.1.3 was implemented as an initial attempt to obtain stable multi-group solutions. 

This algorithm was found to be unstable for multi-group time-dependent calculations. 

Therefore the current implementation allows time-dependent calculations in one energy group 

only. 
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Figure 9: Structural Layout of a Typical diffusionFoam Case 

5.4 Closure 

In this chapter, the implementation for the OpenFOAM-based diffusion solver, called 

diffusionFoam, was described. During solver development, significant effort was devoted 

towards ensuring that an object-oriented approach was followed. This solver is known to be 

unstable for time-dependent multi-group calculations. A number of test calculations and their 

results, using the diffusionFoam solver, are given in chapter 6. Chapter 6 also includes further 

discussion which is based on the knowledge gained in this and previous chapters. 
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6. RESULTS AND FURTHER DISCUSSION 

In order to test the diffusionFoam implementation of chapter 5, numerical solutions to a 

number of test cases have been obtained using the code. The test cases have been chosen so as 

to envelop the main features of the code, and numerical solutions are compared with 

analytical or other numerical solutions. These comparisons are presented in this chapter. 

Section 6.1 includes initial steady-state comparisons for simple one-group reactor models. 

This is then extended to more advanced non-homogenous two-group reactor models in 6.2. In 

section 6.3, short term and medium term dynamics are tested for the cases of step reactivity 

insertion and load-following. Additional discussions around the known issues of 5.3 as well 

as around questions 2, 3 and 4 of Chapter 1 are included in section 6.4 of this chapter. 

6.1 Steady-State Analytical Comparisons 

Analytical criticality conditions are readily available for a number of simple geometries, 

including spherical, block and cylindrical reactors (Stacey 2001), for the case of fixed 

uniform cross-sections. The criticality conditions are given in terms of a geometric 

buckling 2
gB  as follows. 

221
1

BL
k a

f

+
Σ
Σ

==

ν

 
(6.1) 

where 
a

D
L

Σ
=  is the diffusion length. 

These analytical benchmarks formed the basis of initial tests carried out using the 

diffusionFoam implementation. The geometric bucklings and flux profiles for the three simple 

geometries mentioned above, as well as chosen critical dimensions for typical PWR cross 

sections are given in Table 7.  
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Numerical steady-state solutions were obtained using diffusionFoam for each of these cases, 

where the analytical reactor is critical ( 1=k ). The results are summarized in Table 8. From 

the results shown, it is clear that the steady-state solver is operating correctly for simple cases, 

with zero flux at the boundaries. In all cases, the difference in k-effective between the 

analytical and numerical solutions is sufficiently small that it can be attributed to numerical 

discretization error. 

Table 7:  Criticality Conditions for Some Simple Bare Reactors 

 Sphere Block Finite Cylinder 

Geometry 

ρ

 

a
c

b

 

ρ

h
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π
ρ

cos
405.2

0  

Diffusion Length D  10 cm 10 cm 10 cm 

Absorption Cross 

Section aΣ  

0.15 cm-1 0.15 cm-1 0.15 cm-1 

Nu-fission Cross 

Section fΣν  

0.16 cm-1 0.16 cm-1 0.16 cm-1 

Critical Dimensions 99.35 cm 200 x 150 x 177.1 cm ρ=120, h=128.43 

Table 8: Summary of diffusionFoam Results for Steady-state Analytical Benchmarks 

 Sphere Block Finite Cylinder 

Mesh dimensions 50 radial 30 x 30 x 30 50 radial, 50 axial 

k-effective 0.99999 1.00006 1.00001 

Error [ 510×∆k ] -1 +6 +1 
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6.2 Steady-State Benchmark Comparisons 

6.2.1 The Dodds Benchmark 

The Dodds benchmark problem (ANL-7416 1977) is a set of pure neutronic calculations for a 

two-dimensional axisymmetric (r-z) reactor model. The benchmark is intended to test two-

dimensional neutron kinetics solutions, and consists of an initial steady-state eigenvalue 

calculation followed by a supercritical transient with six-group delayed neutron feedback. 

Relevant reactor parameters for the steady-state calculation are given in Table 9 and the 

layout of the reactor is depicted in Figure 10. 

Table 9: Dodds Benchmark Steady-State Parameters 

Parameter Value 

Number of radial meshes 18 (equally spaced) 

Number of axial meshes 28 (equally spaced) 

Number of broad energy groups 2 

Reactor width 235.61 cm 

Reactor height 524.87 cm 

Boundary conditions Zero-flux 

Number of material types 9 

Number of material regions 16 

Benchmark k-effective 0.867053 

 

A steady-state solution to this benchmark using the TINTE code is available (Strydom 2004). 

Since the underlying theory of diffusionFoam is based on the TINTE code theory, the results 

are expected to match closely. 

For reasons discussed in chapter 5, the time-dependent solution to this two-group problem 

could not be obtained with the currently implemented predictor-corrector algorithm. The 

steady-state solution was, however, calculated using diffusionFoam, using a mesh refinement 

of six fine meshes per coarse mesh in both the radial and axial directions. Comparisons of 

steady-state results with both the TINTE code and the benchmark reference result are given in 
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Table 10 and Figure 11. The results of TINTE and diffusionFoam compare very well. There is 

an eigenvalue difference of less than 5101×  between the two codes, and the flux profiles 

show negligible differences. 
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Figure 10: Dodds Benchmark Steady-State Reactor Layout 

 

Table 10: K-effective Comparison for the Dodds Benchmark 

 Reference TINTE diffusionFoam 

k-effective 0.867053 0.867433 0.867442 

Difference [ 510×∆k ] - +38 +39 
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(b) Fast Flux Radial Profiles 

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

r [cm]
R

el
at

iv
e 

F
lu

x

TINTE z=131.2cm
TINTE z=262.5cm
FOAM z=131.2cm
FOAM z=262.5cm

 

(d) Thermal Flux Radial Profiles 
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(a) Fast Flux Axial Profiles 
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(c) Thermal Flux Axial Profiles 

Figure 11: diffusionFoam and TINTE Steady-State Flux Profile Comparisons for the Dodds Benchmark  
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6.2.2 The OECD PBMR Benchmark 

The Nuclear Energy Agency, within the Organization for Economic Co-operation and 

Development (OECD), has published the OECD PBMR benchmark (Reitsma et. al. 2004), in 

which a set of steady-state and transient calculations for the PBMR HTR are defined. The 

reactor is modeled in two-dimensional axisymmetric (r-z) geometry. A total of 190 nuclear 

materials are defined in 580 nuclear calculation regions. The model layout is shown in 

Figure 12. A two-group structure is defined. The benchmark defines the reactor geometry on a 

structured rectangular coarse mesh, indicated by softer lines in Figure 12. 

In this section, case 1 of the benchmark is considered. This is a pure neutronic steady-state 

calculation using fixed cross-section sets. A model for the case was created using a mesh 

refinement of four fine meshes per coarse mesh in both the radial and axial directions. The 

steady-state k-effective for this model was compared with TINTE results for the same case, 

using the same mesh structure. These comparisons were also done for the case of eight fine 

meshes per coarse mesh. The results of these comparisons are given in Table 11. 

Table 11: K-effective Comparison for the OECD PBMR Benchmark 

Case Parameter TINTE diffusionFoam 

Four fine meshes per 
coarse mesh 

K-effective  0.99821 0.99745 

 Difference [ 510×∆k ] - -76 

Eight fine meshes per 
coarse mesh 

K-effective 0.99869 0.99803 

 Difference [ 510×∆k ] - -66 
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Figure 12: PBMR OECD Benchmark Steady-State Reactor Layout 
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From these results it is clear that there is a difference of approximately 70 pcm between 

TINTE and diffusionFoam results. Possible reasons for these differences include: 

• Differences between the discretization methods employed by each solver. FOAM 

employs finite-volume discretization while TINTE employs a variant of the finite-

difference discretization. 

• The current diffusionFoam implementation does not support directional diffusion 

constants. For this reason, non-directional diffusion constants in the void regions were 

approximated, based on the specified benchmark values. 

6.3 Time-Dependent Comparisons 

As was discussed in section 5.3, the simple predictor-corrector solution algorithm of 

section 4.4.1.3 was found to be unable to ensure solution stability for time-dependent multi-

group cases. In the absence of a block-coupled solver, no time-dependent multi-group 

solutions could be obtained using the current diffusionFoam implementation. In order to 

demonstrate the potential of the modern multi-physics approach to these classes of problems, 

however, a number of time-dependent one-group calculations were carried out. 

6.3.1 Short Term Dynamics - Reactivity Insertion 

The bare sphere model of section 6.1 was modified to include delayed neutrons. The delayed 

neutron parameters of Table 12 were assumed, and a mean neutron velocity v  of 106 cm/s 

was assumed. Calculations were then carried out for the first 10 s of reactivity insertion 

events. Both positive and negative step reactivity insertions of 100 pcm and 200 pcm were 

considered. Additionally, each calculation was repeated for the case of constant precursor 

concentrations, so that the prompt jump could be shown without any delayed neutrons 

influences. No supercritical insertion was considered because no reactivity feedback model 

has currently been implemented in diffusionFoam. The results of all reactivity insertion cases 

are summarized in Figure 13. The numerical results are compared with analytical prompt 

jump approximation (PJA) solutions, which are derived in the next section. These analytical 
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solutions describe the initial jump and power gradient immediately after the reactivity 

insertion. The analytical PJA solutions overlaid on  Figure 13 therefore only indicate the 

initial response of the reactor. No comparisons were made for later times. 

Table 12: Delayed Neutron Parameters for Reactivity Insertion Calculations 

Group 

l  

Decay Constant 

lλ  [s-1] 

Fission Fraction 
310×lβ † 

1 3.87 0.179504 

2 1.4 0.883712 

3 0.311 2.809928 

4 0.116 1.297952 

5 0.03174 1.470552 

6 0.01272 0.262352 

All - 6.904 

 

The prompt jump is clearly visible in all cases, followed by the slower response of the six 

delayed neutron groups. For all cases of constant delayed neutron precursor concentrations, 

the prompt jump is clearly visible and, as expected, the power remains constant after this 

prompt jump. The results around the initial jump compare well with the analytical 

approximations obtained in the next section. Differences are seen beyond 0.5 s because the 

prompt jump approximation solution of the next section describes only the initial reactor 

response. 

 

                                                 

† Values used are taken from Table 3 and Table 4 for U235. 
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Figure 13: Time Plot of Relative Power for Subprompt-critical Reactivity Insertions 

6.3.1.1 Analytical Comparisons 

Analytical approximations of the initial power response can be obtained using the prompt 

jump approximation (PJA) (Ott and Neuhold 1985). What follows is the calculation of the 

expected response, based on this approximation, for the reactivity insertion cases. 

The neutron generation time Λ  for the model is calculated as 

s
v f

6

6
1025.6

16.010

11 −×=
×

=
Σ

=Λ
ν

 

The simplified point kinetics equation, independent of external sources is written 

∑Λ
+

Λ
−=

l
llQ

dt

dQ ζλβρ 1
 



 

77 

where Q  is the total reactor power and ρ  in the inserted reactivity. The precursor balance 

equation is written 

Q
dt

d
lll

l βζλζ +−=  

The prompt jump approximation (PJA) may be applied to determine the initial jump after a 

step reactivity insertion. 

ρβ
β
−

=








PJA
Q

Q

0

*
0  (6.2) 

The rate of change of power, following the reactivity insertion and based on the point jump 

approximation, may be calculated according to 

*
0Q

dt

dQ

PJA ρβ
ρλ

−
=








 (6.3) 

where the single group decay constant λ  is calculated according to 

∑=
l

llλβ
β

λ 1
 

For the data of Table 12, 1435.0 −= sλ . 

Solutions for the prompt jump and initial rate of change of power following the prompt jump, 

Equations (6.2) and (6.3), are given in Table 13. These initial power curves are superimposed 

on Figure 13 for comparison with the diffusionFoam results. 

Table 13: Point Jump Approximation Applied to the Reactivity Insertion Cases 

Inserted 
Reactivity 

ρ  

Prompt Jump 

PJA
Q

Q









0

*
0  

Initial Power Slope 

PJAdt

dQ








 

+200 pcm 1.408 0.25 

+100 pcm 1.169 0.0862 

-100 pcm 0.873 -0.0481 

-200 pcm 0.775 -0.0758 
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6.3.2 Medium Term Dynamics – Load Follow 

The OECD PBMR benchmark model of section 6.2.2 was collapsed to a single energy group 

model for the purposes of running transients using diffusionFoam. Case 4a of the OECD 

PBMR benchmark (Reitsma et. al. 2004) was run using this single group model. In this case, 

the Xe135 behaviour is modelled for a typical 100%-40%-100% load follow. The reactor, 

initially at a steady-state power of 400 MW (100%), is ramped down to 160 MW (40%). After 

three hours of operation at this level, the reactor is then ramped back to full power. The 

control rods are kept at a constant position for the duration of the transient and the global 

reactivity is monitored. The benchmark calculation includes temperature feedback. This 

feedback was not modelled in diffusionFoam. 

At each time-interval in the calculation, the k-effective was updated according to 

equation (4.31) and, based on this, an effective global reactivity was calculated. The time 

behaviour of global reactivity, as calculated using diffusionFoam, is shown in Figure 14, 

compared with the reference TINTE solution for this case.  

The time-scales of the reactivity response compare well, i.e. the maximum reactivity occurs 

6 h after the return to full power in both cases. There are significant differences (150 pcm) in 

the magnitudes calculated by diffusionFoam and TINTE. These can be attributed to modelling 

differences. The diffusionFoam solution was obtained by assuming a step change in reactor 

power, rather than the six minute ramp specified in the benchmark. No temperature feedback 

was modelled. A single energy group was assumed for the diffusionFoam calculation, which 

was obtained by collapsing from the two-group steady-state solution of section 6.2.2. There 

are also potentially differences in the 135Xe and 135I yields because TINTE does not allow 

custom values to be specified. 
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Figure 14: Time Plot of Global Reactivity for Load Follow Transients 

 

6.4 Further Discussion 

The results of sections 6.1 through 6.3 have shown that the diffusionFoam implementation, 

although still in an early stage of development is capable of solving a number of general 

reactor analysis problems. It is clear from this that the FOAM toolkit can successfully be 

applied to the solution of the spatial- and time-dependent neutron diffusion equation. In this 

section, we now turn towards answering questions 2, 3 and 4 of section 1.1, which relate to 

the advantages provided by a multi-physics toolkits such as FOAM and to implementing more 

advanced functionality in the toolkit. Also included in this section are discussions around 

particular issues which were encountered during the development of diffusionFoam. 

6.4.1 Theoretical Modeling 

Chapter 4 includes extensive derivations and descriptions of the necessary equations and 

algorithms for a FOAM-based multi-group diffusion solver, based on the TINTE code. In 

almost all cases, there is no significant difference from the TINTE equations. Any differences 
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have resulted from the multi-group assumption used, whereas TINTE uses a two-group 

assumption. 

Of importance is that no expressions for modeling the spatial discretization were necessary. 

FOAM is responsible for handling the basic finite-volume discretization. This is quite an 

advantage. If one considers the TINTE theoretical description (Clifford 2007), a substantial 

portion of this is devoted to the spatial discretization and the matrix solver based on this 

discretization. It is clear from this that an object-oriented framework allows the developer to 

approach the problem from a higher level than does traditional code development. 

Further, if the same approach is applied to the time-discretization of the delayed neutrons and 

saturation fission products, these too may also be approached from a higher level. In these 

cases it will, of course, be necessary to introduce suitable higher order time-discretization 

schemes as options in FOAM. This will not necessarily simplify the theoretical description 

but it will separate the task of implementing a higher order time-discretization scheme from 

that of implementing the global solution algorithm, i.e. a first-order assumption may initially 

be made and therefore the overall development of the solver is not held back until such time 

as this higher-order scheme is fully implemented and tested. The theoretical descriptions of 

some higher order time discretization schemes are available (Ferziger and Peric 2001), and 

have been successfully implemented in other finite-volume codes (Star-CD 2007). The 

FOAM implementation of typical higher order time differencing schemes such as the GAKIN 

and θ  methods (Stacey 2001), used in reactor analysis, should be relatively straightforward 

tasks. 

6.4.2 Block Coupled Solutions 

For reasons discussed previously, the coupling of the group diffusion equations requires an 

implicit coupling. This requirement has a number of implications when considering 

development on any framework. This discussion is not limited to multi-physics toolkits alone; 

these considerations must be taken into account in any new solver. 
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The multi-group diffusion equations represent a block-point implicit set of PDEs, i.e. the 

group fluxes depend on each other in the same computational point but each group flux 

depends only on the neighbouring value of the same energy group. We therefore have a block 

matrix with many dense GG ×  matrices along the diagonal, and spatial coupling vectors 

scattered in the lower and upper matrices, as depicted in Figure 15. 

 
 

Figure 15: Typical Block Matrix Layout for a Block-Point Implicit set of PDEs 

By structuring the matrix in this manner, matrix preconditioning remains effective. In the 

context of the FOAM and similar frameworks, however, the construction and solution of this 

block matrix requires additional effort. In particular, one must look at the method of 

parallelization employed by the toolkit. FOAM uses domain decomposition for parallelization 

of the solver and, in this case, it will be necessary to invest additional effort into extending 

this parallelization to block solutions. 

Implicit equation coupling and block matrices are currently areas of development in FOAM 

(Jasak 2007). The coupled solution of vector and tensor equations is currently supported, and 

block-point implicit coupling is likely to be available in the future. 

6.4.3 Higher Order Transport Methods 

The diffusionFoam implementation is based on the diffusion approximation. Up to now the 

more advanced neutron transport methods or their applicability to general multi-physics 

toolkits has yet to be discussed. In exploring the potential for the deterministic solution of the 

neutron transport equation using multi-physics toolkits we will restrict ourselves to the 
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discrete-ordinates (S-N) methods. Discussions around the spherical harmonics methods are 

excluded because of their relative mathematical complexity, but the principles discussed still 

apply. The discrete-ordinates methods essentially discretize the angular domain (direction of 

neutron flow) into a number of fixed directions or ordinates. This is not dissimilar to the 

multiple energy group approach; the number of coupled equations now becomes multiplied by 

the number of discrete ordinates. A simplified representation of the steady-state discrete-

ordinates equation is given below (Stacey 2001). 

GgKkSw gk

G

g

K

k
gkk

gg
sgkgtgkk ,,1,,,1,,

1' 1'
',''

'
,,, …… ==+=+∇• ∑ ∑

= =

→ ψσψσψΩ  

where 

kΩ  is the kth ordinate unit vector 

gk ,ψ  is the angular flux for the kth ordinate and gth energy group 

gt ,σ , gg
s

→'σ  are the gth energy group microscopic total and in-scattering cross-sections 

kw  is the kth ordinate quadrature weight describing the between ordinate scattering 

dependency 

gkS ,  is the source term including fission and fixed sources. 

In the general neutron transport equation, the diffusion term is replaced by a streaming 

operator ( )t,,rΩΩ ψ∇• . The angular domain is discretized into discrete values kΩ , chosen 

such that they correspond with the angular fluxes kψ . The streaming operator is written as 

( )tkk ,rΩ ψ∇• . The operator is now in a form suitable for applying any of the finite-

difference, finite-volume, finite-element, etc. formulations. FOAM does not currently include 

this particular operator, however the implementation of this operator will be a relatively 

straightforward task after a suitable finite-volume formulation is derived. 

Methods are also required to simplify the scattering integral in the transport equation. A 

common approach is to approximate the scattering source using Legendre polynomials 

(Stacey 2001). Using this approach, the integral reduces to a sum involving explicit 
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coefficients (quadrature weights kw ). No special treatment is required for these terms when 

applying the finite-volume or other methodologies. 

It is clear that, provided a suitable discretized formulation for the streaming term can be 

obtained, the discrete-ordinates method is readily applicable to any general multi-physics 

toolkit. 

6.4.4 Higher Order Spatial Discretization Schemes 

The relatively large computational requirements of deterministic reactor analysis have led 

researchers to study methods of improving the computational accuracy on coarse meshes. 

This has led to the development of a number of higher-order spatial discretization schemes. 

Of these, the nodal (Wagner 1979) (Lawrence and Dorning 1979) (Shober et. al. 1986) (Hutt 

and Knight 1990) (Turinsky et. al. 1994) and finite-element methods (Kang and Hansen 1973) 

(Ciarlet 1978) (Lautard 1994) (Van Criekingen 2007) are in common use. Sutton and Aviles 

provide a good general overview of the higher order methods available for solving the time-

dependent group diffusion equation (Sutton and Aviles 1996). 

The nodal methods are ideally suited to lattice-type calculations where representative cross-

sections for each large node are obtained using an assembly calculation. In this respect they 

are used particularly in light-water reactor analysis, where a node can be defined for each 

rectangular fuel assembly. The nodal methods have generally been restricted to structured 

rectangular meshes in the past. Recent development has been made into hexagonal nodal 

methods for the cases of hexagonal lattice structures such as those found in VVER reactors 

and block HTRs (Jin and Chang 1998) (Bangyang and Zhongsheng 2006). This development 

is, however, for the case of structured orthogonal meshes. 

For reactor analysis calculations using unstructured meshes, the finite-element formulation 

has more commonly been used (Lucas et. al. 2004). This is not to say that the finite-volume 

method is not suited to reactor analysis problems. Rather, if one takes the point of view that 

the nodal, finite-volume and finite-element methods can be written in mathematically 
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equivalent forms, it is then possible to represent the finite-element and nodal methods using a 

higher order finite-volume discretization. A number of examples of this generalized point of 

view are available. For example, Grossman and Hennart consider the finite-element 

formulation to be a general discretization technique, and as such have successfully applied it 

to the nodal methods (Grossman and Hennart 2007). Similarly, Chavent combined the 

advantages of the finite-volume and finite-element methods into a single numerical procedure, 

by using mixed-hybrid finite-element and Godunov’s methods (Chavent et. al. 1997). 

Numerous other studies have also been carried out into higher order finite-volume methods 

and their relation to finite element methods (Baranger et. al. 1996) (Aboubacar and Webster 

2000).  

These studies are generally not aimed at reactor analysis problems, however, and research will 

most likely be necessary to derive these higher order finite-volume discretizations for 

implementation in a finite-volume toolkit such as FOAM. FOAM provides many of the 

features necessary for implementing such higher-order discretization schemes. The FOAM 

toolkit allows fields of values to be defined at cell-centers, mesh faces and at mesh vertices. 

The stressFemFoam application is an example of a finite-element implementation in FOAM.  

6.4.5 Other Numerical Issues 

Apart from the diffusion equation coupling problems discussed in previous sections, 

numerous other numerical problems were encountered during testing and execution of 

diffusionFoam. 

� Steady-state convergence of the more complex models is slow. The TINTE code 

system generally provides a converged steady-state solution with 50 iterations. The 

diffusionFoam code currently requires significantly more (several hundred) iterations 

than this for convergence. This is largely because the maximum pseudo-transient time 

interval is limited by solution stability in diffusionFoam. More attention should be 

paid towards optimizing the numerics of the steady-state solution. In particular, the 
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pseudo-transient algorithm used by the TINTE code could be replaced with the a more 

traditional fixed-source iteration method. 

� The convergence of the inner iteration during time-dependent calculations requires 

optimization. During the diffusion equation solution FOAM, by default, adds a portion 

of the prompt neutron production term as an explicit source to ensure stability during 

the matrix inversion. A properly converged solution therefore requires iteration 

outside the matrix solution. This is done in the inner iteration loop of diffusionFoam. 

A more advanced method to linearise the prompt neutron production could potentially 

improve the rate of convergence. 

� The time-dependent and pseudo-transient steady-state calculations were carried out 

based on user-specified time interval values. The introduction of a time interval 

controller, which optimizes the time intervals based on the reactor period and other 

parameters, will assist in reducing the number of time intervals required for a given 

calculation. 

The above problems are not specific to FOAM or any other multi-physics toolkits. It is likely 

that any new implementation, on any platform, will require significant effort to optimize the 

numerics of the problem. 

6.5 Closure 

In this chapter, numerical solutions to a number of test cases were obtained using the 

diffusionFoam code. The test cases were chosen so as to test the main features of the code, 

from simple steady-state solutions to more complex time-dependent solutions involving short 

and medium term dynamics. The numerical solutions were compared to analytical or other 

numerical solutions. In all cases the solver performed adequately. Based on this we can 

conclude that the FOAM implementation of a time-dependent diffusion solver was successful. 

The main numerical issues surrounding the diffusionFoam code were then discussed. The 

potential for and issues surrounding the implementation of a block solver in FOAM were 
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discussed, as was the potential for implementing more advanced transport calculations and 

higher order discretization schemes. In these discussions the potential for applying multi-

physics toolkits to other, more advanced, classes of reactor analysis problems is shown. In 

chapter 7 the main conclusions from this and previous chapters are summarized. 
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7. CONCLUSIONS 

The basic implementation of a time-dependent diffusion solver was created using the FOAM 

toolkit. This new implementation, called diffusionFoam, includes models for delayed 

neutrons as well as fission product poisoning by saturation fission products such as 135Xe. 

Fixed value cross-sections were assumed. This solver was shown to function well for two-

group steady-state calculations and one-group time-dependent calculations. 

In the development of this solver, a subset of the theoretical basis for the TINTE code was 

rederived in such a way as to be compatible with the FOAM framework. Based on this 

theoretical description, a data structure was defined and a number of container classes were 

then created. The resulting implementation is an example of an object-oriented, multi-physics 

approach to reactor analysis solver development. While there is still scope for improvement 

and outstanding issues, the key benefits and disadvantages of such an approach have been 

explored to some depth. 

The FOAM toolkit has shown great potential for the solution of general reactor analysis 

problems. The initial literature survey showed FOAM to be a general numerical toolkit, which 

had the potential for solving reactor analysis classes of problems. Further research has shown, 

rather, that the greatest benefit of using such a framework is through the software design 

approach applied. When creating a solver using such a framework, the developer inherently 

seeks to modularize the code. FOAM includes a fixed number of container types; scalar , 

dimensionedScalar , Field  of scalar  values and a Field  of dimensionedScalar  values. 

Inherent to each of these objects is the functionality to read and write data to/from file, for 

mathematical expression evaluation and full error handling. The code developer is therefore 

responsible for identifying how these variables interact with each other, and structuring them 

so as to take advantage of these interactions. It is clear that this object-oriented approach to 

coding does provide advantages in terms of the development and maintenance of complex 

reactor analysis codes.  
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The theoretical description of chapter 4 and further discussions in section 6.4.1 have shown 

that the approach followed in deriving suitable equations for the FOAM framework is 

virtually indistinguishable from the approach followed in the case of the TINTE code. A 

distinguishing feature of the object-oriented approach is that physical equation derivations are 

carried out independently from those for the spatial and time discretization schemes. Thus we 

can see that in order to take advantage of the object-oriented structure of the framework, it is 

necessary to modularize the theoretical basis. 

A number of test calculations were carried out to validate the accuracy of the diffusionFoam 

solver. 

� Steady-state eigenvalue comparisons were made for three simple bare reactors, namely 

spherical, block and finite-cylinder reactors, in section 6.1. The numerical results 

compared very well with the analytical criticality conditions for these simple reactor 

shapes.  

� A steady-state eigenvalue comparison was made for the Dodds benchmark problem, in 

section 6.2.1. Here, both the calculated k-effective and flux profiles were shown to 

closely match the TINTE results for this benchmark. The k-effective also compared 

well with the reference benchmark value (39 pcm difference). 

� A steady-state eigenvalue comparison was made for case 1 of the OECD PBMR 

benchmark in section 6.2.2. Here small k-effective differences (70 pcm) were seen 

between diffusionFoam and TINTE solutions. 

� Short term dynamics comparisons were made by modeling a number of simple 

reactivity insertion transients based on the one-group bare sphere reactor model of 

section 6.1. Positive and negative step reactivity insertions of 100 and 200 pcm were 

considered. The initial power response of the reactor compared well with analytical 

solutions, which were based on the point jump approximation. 

� The medium term reactor dynamics was tested for a simple load follow calculation. 

The two energy group model of section 6.2.2 was collapsed to a single group model. 

Based on this new model, a 100%-40%-100% load follow (case 4a of the OECD 
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PBMR benchmark) was calculated using diffusionFoam. The results were considered 

adequate in comparison with TINTE results for the same calculation. 

Based on these tests, the diffusionFoam implementation has been shown to perform 

satisfactorily, although a number of issues do need to be addressed. The structure is currently 

in place for multi-group time-dependent solutions, but the fully time-dependent solution for 

multiple energy groups will require the resolution of several numerical issues. These same 

issues would need to be resolved for the implementation of a more advanced neutron transport 

solver. 

Of particular importance would be the need for a block-point implicit solver, as was discussed 

in section 6.4.2. The fact that FOAM currently excludes such a coupled solver may initially 

seem to be a disadvantage, but one must consider that an efficient block solver would need to 

be created or sourced for any new implementation, regardless of the underlying framework. 

The lack of this functionality in FOAM should therefore not lead to the conclusion that an 

object-oriented multi-physics approach is not suited to reactor analysis applications. Rather, 

one should note that such functionality will need to be implemented as it would for any other 

framework. For this implementation, an object-oriented design provides a number of 

advantages. In particular, the implementation of new functionality in an object-oriented 

framework will have little to no impact on the already existing functionality. Additional 

features may be developed in parallel without the need to continuously ensure that the final 

code is synchronized, and that the new features are compatible with each other. 

The potential for more advanced transport solutions was discussed in section 6.4.3. Here it 

was determined that such solutions are feasible, provided that equivalent finite-volume 

expressions for the spatial coupling can be derived. In section 6.4.4, the potential for 

implementing higher order spatial discretization schemes was discussed. This, again, is 

dependent on the derivation of an equivalent finite-volume representation for such schemes.  
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From the discussions and conclusions above, the objectives stated in section 1.1 have been 

met. It has been shown that a modern object-oriented multi-physics toolkit can effectively be 

applied to the solution of spatial reactor dynamics problems, and the potential exists for their 

application to other classes of reactor analysis problems. 

7.1 Future Work 

It is proposed that certain additional research be carried out to further investigate a number of 

topics. 

� Existing block solvers used in reactor analysis, as well as those specialized block 

solvers already implemented in FOAM should be investigated further. The aim of 

such an investigation would be to fully block couple the diffusion equation solution in 

the current diffusionFoam implementation in a manner consistent with the existing 

structure of the toolkit. 

� There is significant scope for the development of higher-order discretization schemes 

using the finite-volume approach. Developments in both time and spatial 

discretization schemes should be considered. Such schemes would provide advantages 

for any number of classes of engineering problems in addition to reactor analysis 

problems. 

� A finite-volume implementation of the neutron transport equation, specifically using 

the discrete-ordinates method, would serve to illustrate the flexibility of the 

methodology. Such an illustration would further assist in breaking down the existing 

barriers between the reactor analysis classes of problems and other classes of 

engineering problems. Integral to this research would be the derivation of the 

equivalent streaming operator and required boundary conditions for the neutron 

transport equation using the finite-volume approach. 

� The extension of the current diffusionFoam implementation to include the feedback 

effects of temperature and coolant density could potentially serve to illustrate the 
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primary advantages of utilizing multi-physics frameworks.  Such an extension would 

require the close coupling of neutronic and thermal-hydraulic fields.  As discussed in 

the introductory sections of this text, substantial research is currently directed towards 

the topic of close coupling in reactor analysis. Such a coupling would contribute 

valuable knowledge towards this topic. 

� The storage, retrieval and processing of raw nuclear data, based on libraries such as 

the ENDF/B libraries, is a topic which requires substantial attention in the future. In 

particular, research into efficient and optimal storage, retrieval and processing of raw 

nuclear data using object-based data formats such as HDF5 and the FOAM file format 

is recommended. Such storage formats are in line with the current object-oriented 

approach to code development. 
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