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ABSTRACT

Traditionally coupled field reactor analysis haserbecarried out using
several loosely coupled solvers, each having beeeldped independently
from the others. In the field of multi-physics, tlearrent generation of
object-oriented toolkits provides robust close dmgpof multiple fields on
a single framework. This research investigates shaability of such
frameworks, in particular the Open-source Field @pen and
Manipulation (OpenFOAM) framework, for the solutiofh spatial reactor
dynamics problems. For this a subset of the thebthe TIime-dependent
Neutronics and TEmperatures (TINTE) code, a timgeddent two-group
diffusion solver, was implemented in the OpenFOAMnNiework. This
newly created code, called diffusionFOAM, was tdster a number of
steady-state and transient cases. The solver wasdfdo perform
satisfactorily, despite a number of numerical issuehe object-oriented
structure of the framework allowed for rapid anficednt development of
the solver. Further investigations suggest thatemadvanced transport
methods and higher order spatial discretizatioreisas can potentially be

implemented using such a framework as well.
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NOMENCLATURE

Latin Characters

A - in-cell coefficient

A - outward facing area vector / coefficient matrix

B - neutron buckling

C - delayed neutron precursor concentration / batvggeup cross-term
d - length

d - length vector

D - material diffusion constant

f - arbitrary function name
E, - Energy per fission

F - nuclear fission rate

G - total number of energy groups

| - generic parent isotope

k - effective reactor multiplication constant

K - total number of ordinates

L - neutron leakage / total number of delayed neutrecursor groups
N - generic isotope concentration

r - position vector

P - neutron production rate

Q - source term / power production

R - reaction rate

Re - time-dependent term in the neutron diffusiQuagion
s - control volume surface

S - source term

S - source term vector

t -time

U - fluid velocity vector

Vv - mean neutron velocity

V -volume



w - quadrature weight

X - generic daughter isotope

Greek Characters

a - albedo / relaxation factor

[ - delayed neutron fraction per fission
X - neutron spectrum

A - discrete time interval

¢ - scalar neutron flux

® - neutron flux vector

@ - mass flux

y - yield per fission

A - decay constant / extrapolated length
A\ - neutron generation time

M - integrating factor

V - neutron yield per fission

p© - fluid density or inserted reactivity

O - microscopic neutron cross-section
> - macroscopic neutron cross-section
Q - ordinate unit direction vector

Y - directional neutron flux

{ - higher order production term

Superscripts

g - new time value (in the case of neutron flux dethyed neutron concentration)
q° - old time value (in the case of neutron flux aleflyed neutron concentration)
q¢"? - from the g energy group to thé"genergy group

q“~* - from the k™ ordinate to the Rordinate

q - calculated value / after the prompt jump



Subscripts

g, - old time value

g, - new time value

g, - absorption

U.pedo - With reference to the albedo boundary condition
g; - at the boundary

gy - delayed

Jexrap - With reference to the extrapolated length boupdandition
g, - fission / at the face

q, - with reference to theyenergy group

g, - with reference to thd'iisotope

q; - with reference to thd'jcontrol volume

g, - with reference to the'kangular ordinate

g, - with reference to thd'ldelayed neutron precursor group

g, - Scattering

g, - total

g, - with reference to the scalar neutron flux

Embelishments

g" - per unit volume
g - first time derivative
g - average value

g - local value

Xi



1. INTRODUCTION

Nuclear reactor analysis deals with the coupleditgmi of the many physical processes
taking place in a nuclear reactor. The solutionthefse individual physical processes has
traditionally been carried out using several logsslupled solvers, each having been
developed independently from the others. In pddiguthe calculation of the spatial
distribution of neutrons in space and time is tiadally separated completely from the heat
transfer calculation. This separation was introduicethe past for a number of reasons; the
solution of each class of problem is typically uridken by specialists in each field, the
complexity of the problems differ, and there areneucal differences between the classes of
problems being modeled. This separation leadsdbl@ms when coupling the solvers. Often
differences in data management and spatial diget&in require complex interface codes to
be developed for the mapping and passing of ddtan@ndependent source code is written
to perform the same tasks in each solver and thexesignificant amount of duplication. This
in turn makes the verification of the coupled codesme consuming and often labour-

intensive task.

This particular problem is also encountered inftelel of general multi-physics, which deals
with the coupled solution of multiple fields. Inetlpast, the fields of reactor analysis and of
general multi-physics analysis, e.g. computatidled dynamics or structural analysis, were
considered to be separate entities, and therefurle lkeas developed independently from the
other over the years. The developments in eacth fiale shown very different trends, driven
largely by external influences in industry. In pautar, strict regulations in the nuclear
industry require that newly developed codes undergtetailed verification and validation
process, often prolonging the development timessidemably. Thus there has been a
reluctance to develop new codes. More often tharanwlder code will be updated, with the

disadvantage that the older programming methodesogind structures remain unchanged.

In contrast, general multi-physics analysis apptedther engineering fields has advanced

rapidly over recent years, embracing newer progremgnmethodologies such as object-



oriented programming. This has in turn led to tlevallopment of several multi-physics
toolkits, allowing the solution many classes of ieegring problems in a simultaneous
fashion, and readily extendable to new classegdaflpms. One such example is the Open-
source Field Operation and Manipulation (OpenFOAdbIkit, a set of classes written in the
C++ programming language, which solves generaligbadifferential equations using the
finite-volume approach. The finite-volume approaslithe standard methodology used today
in computational fluid dynamics (CFD) calculatidons the solution of fluid flow problems. It
may be considered an extension to the finite-difiee approach, which conserves the

properties of a variable over a control volume.

1.1 Research Objectives

The objective of this research is to show that modsbject-oriented multi-physics toolkits
can effectively be used for the solution of spataictor dynamics and other classes of reactor
analysis problems. In achieving this objective, fillowing questions will be considered and

answered.

1. Can the OpenFOAM toolkit be successfully used ttvesdhe spatial- and time-

dependent multi-group neutron diffusion equation?

2. Does the OpenFOAM toolkit provide advantages imteiof the development and

maintenance of a reactor analysis code?

3. Can the OpenFOAM toolkit be extended to allow fooren advanced transport

approximations such as discrete-ordinates and aliiarmonics?

4. Can high-order spatial discretization schemes sashthe nodal methods be

generalized such that they may be implemented uben@penFOAM toolkit?

Questions 1 and 2 are the focus of this researchval be answered using a practical
approach. The remaining questions are essentipgutative, and answers will be given
based on experience gained over the duration efrdgearch. A step-by-step approach is

followed which allows the above questions to bewsned. Each step represents a logical



progression towards an understanding of the reaneings of reactor analysis codes as well as
the capabilities and advantages provided by thenBPAM toolkit. An existing code, the
Time-dependent Neutronics and TEmperatures (TINddg)e, provides the reference theory
for a basic spatial- and time-dependent solver. ifrfi@ementation of a subset of the TINTE
functionality using OpenFOAM is the primary mearyswhich experience will be gained for

the purposes of answering the above questions.

1.2 Outline of Dissertation

Chapter 2 provides a review of the available ltiem@ that pertains to this research. Included
in this chapter are a discussion and backgroundgeneral reactor analysis and its
development over the years in section 2.1. A basioduction to the TINTE code system is
also provided. The concept of multi-physics analyisi discussed in section 2.2, and we
explore the current-day field of CFD analysis asoan of multi-physics analysis. The
objective of the discussion in section 2.3 is tove a general comparison between the
current solution methods employed in both multigby analysis and reactor analysis codes.
The concept of object-oriented programming and #gwantages it provides for code
development are introduced in section 2.4, follovibgdan introduction to object-oriented
toolkits, which have been developed specificalllyrfailti-physics analysis. In particular, one

example of such toolkits, the OpenFOAM toolkitdiscussed in section 2.5.

The OpenFOAM toolkit is studied in more detail ihapter 3. Here the structure and
functionality of the toolkit is examined from a otar analysis perspective, addressing the
major features. Chapter 4 details the basic suiddbieory of the TINTE code, rewritten in a
form that is more suited for direct implementatioOpenFOAM. The implementation of this
theory in OpenFOAM is then described in chapteAfong with this implementation
description useful and convenient features aredy@se well as certain missing features that
would have been of assistance had they been alail@bhapter 6 contains a summary of

results, obtained using the newly implemented sphoe a compiled set of simple analytical



cases and numerical benchmark calculations. A d&on of findings and conclusions

follows this in chapter 7.



2. LITERATURE SURVEY

2.1 Nuclear Reactor Dynamics Methods

The principle equation of use in reactor analysighie neutron transport equation (Stacey
2001), which is derived from the Boltzmann equationthe kinetic theory of gases. This
equation can be used to determine the distribubioneutrons and photons in space as a
function of time. The transport equation may bevadldirectly in only a very limited number
of cases. For this reason, approximations and fiogtlons to the transport equation are

applied to solve engineering problems.

The solution methods may be divided into two class@amely stochastic (Monte Carlo) and
deterministic methods. The deterministic methody b further classified into integral and
integro-differential transport methods. The intedrfferential transport methods include the

discrete-ordinates and spherical-harmonics methods.

The discrete-ordinates methods (S-N methods) asedban the concept of evaluating the
transport equation in a number of discrete angdigections. Quadrature relationships are
used to replace the scattering and fission sourgalar integrals with sums over the angular
directions (ordinates) (Stacey 2001). The resudt c®upled set of equations for each ordinate

and energy group, which are solved simultaneowsbbtain the directional group fluxes.

The spherical harmonics methods (P-L methods) asedon the concept of representing the
angular flux and differential scattering cross-gettby means of Legendre polynomials
(Stacey 2001). The result is a coupled set of émpumfor the N-Legendre flux moments and

each energy group, which are solved simultanedosiyptain group fluxes.

A well known simplification to the transport equmti is the diffusion approximation.
Diffusion methods make use of Fick’s law of diffoisito approximate the neutron current at a

point in the reactor using a diffusion coefficient.



The diffusion equation is mathematically equivalenthe first order discrete-ordinates (S-1)
and spherical harmonics (P-1) approximations. Tiffasion approximation, in its derivation,
assumes that neutron scattering is isotropic, aeubsorption is less likely than scattering,
and that there is a linear spatial variation in tieeitron distribution. These assumptions are
valid for moderating materials, but not for fuedtiong absorbers and other regions of strong
flux gradient, or cavities. Somewhat better appr@ations may, however, be obtained for the
situations above by means of adjusted nuclear pEm As an example, effective
homogenized cross-sections (Stacey 2001) may ke tosepproximate the flux in regions
containing strong absorber materials and to mdaelinfluences of control rods. Similarly,
direction-dependent diffusion coefficients may Isedito model the neutron streaming effects

in cavities.

Despite the assumptions made and the inaccuracsssciated with the diffusion
approximation, the multi-group diffusion equatianstill in common use today for spatial-
and time-dependent reactor analysis because afkelistive simplicity and speed. As an
example, the United States Nuclear Regulatory Casion (U.S.NRC) currently uses the
Purdue Advanced Reactor Core Simulator (PARCS) ddde et. al. 1998), a diffusion
equation based solver, to predict the time-depanbenaviour of reactors during operation

and during postulated accident conditions.

2.1.1A Brief Background on Computational Reactor Analyss

Smith gives a very thorough overview of the develept of reactor core analysis methods
over the past decades (Smith 2003). Early rea@sigds made use of the so-called four- and
six-factor formulae. For this, extensive use ofadfits, geometrical approximations and
analytical solutions was required. In the 1950sthads were driven largely by the needs of
the naval light-water reactors. A large emphasis placed on creating simple mathematical
models for the many analytical concepts necessarydactor analysis. These simplified
analytical models relied heavily on an understagpdoi the underlying physics of the

problem.



With the advent of the electronic computer in t®6ds and 1970s, reactor design began to
make extensive use of computational methods. Eadgtor dynamics codes solved the one-
dimensional few-group diffusion equations, takingoi account the effects of delayed

neutrons and the fission produ¢td and***Xe. This was later extended to two-dimensional

finite-difference codes.

During the 1980s more advanced methods such dmiteeelement method (FEM), amongst
others, began to gain popularity. A number of codese written making use of these
‘more exotic’ spatial discretization methods. Araeple of this is the TINTE code, discussed
in more detail in upcoming sections, which makes asthe leakage iteration method, an
extension of the finite-difference method. It wasidg these years that the personal computer
industry boomed. It was also during this time, heere that accidents such as Three-Mile
Island (TMI) and Chernobyl took place. This caudkd nuclear industry to lose much
momentum, and also reactor analysis code develaprivime stringent safety requirements
resulted in increased code development times aedntitlear industry was reluctant to
develop new codes. Over the last decade (mid 188@srds) the nuclear industry has since
regained some momentum and, with this, a numbemofe modern codes have been

developed.

There is currently an emphasis on replacing therasimplified methods of solution with a
first principles approach to solving the neutraangport equation (Ragusa 2006). At present,
a number of three-dimensional implementations of thscrete ordinates methods are
available. One good example of a modern deterngnistutron transport solver is the
research code ATTILA (Lucas et. al. 2004). ATTILAI\&es a first-order form of the steady-
state transport equation on a three-dimensionarustared spatial mesh, using tetrahedral

mesh elements. ATTILA is coded in FORTRAN 90.

Ivanov (Ilvanov 2007) states that current trendsuolear power generation and in the design
of next-generation plants are resulting in a greataphasis being placed on improving

analyses through improved coupled methodologies. cdmcept of multi-physics multi-scale



reactor analysis code systems has recently beeoduded, aiming towards flexible and

efficient coupling of reactor analysis models.

2.1.2The TINTE Code System

The TIme-dependent Neutronics and TEmperatures TE)Ncode system (Gerwin 1987)
(Gerwin et. al. 1989) is a two-group diffusion cdde the calculation of the time-dependent
nuclear and thermal behavior of high temperature-agmled reactors (HTGRS), in two-
dimensional axisymmetric geometry. The code wagirmally written for the prediction of the
behavior of pebble-bed reactors for short-term dyina (power excursions, etc.) but this was
later extended to medium term dynamics (xenon lasichs, etc.). The code was specifically
written with speed in mind. A number of approxiroas and simplifications have been
introduced to the code that have allowed full spadnd time-dependent reactor analysis at

real-time or faster speeds using modern persomapaters.

Written in FORTRAN 77, the neutronic module haserdty been reverse engineered at
PBMR (Clifford 2007), therefore the underlying etjoas and solution algorithms are well
understood. TINTE solves the two-group neutronugdithn equations, taking into account the
effects of delayed neutrons, fission-product pdisgand temperature changes. The reactor is

modeled using a structured, rectangular, two-dinoe$ axisymmetric mesh.

2.2 Multi-physics Analysis

Multi-physics deals with coupled-field analysisioaling analysts to determine the combined
effects of multiple fields (physical phenomena) awlesign (Lethbridge 2004/2005). In the
past, the effects of these various phenomena weaietl separately, utilizing a single analysis
for each phenomena. As an example, the deflecfi@am aircraft wing was determined in the

past by first analyzing the fluid flow over an ufideted wing. The resulting forces were then
used as inputs to a wing deflection calculatione Tiodern multi-physics approach would be
to couple a finite-volume (FV) computational fludgnamics (CFD) and a finite-element (FE)

material stress calculation together as a singleulzdion. The wing deflection is used to



update the mesh for the CFD calculation and the €&lBulation yields surface pressures and

shear forces for the material stress calculation.

Many traditional nuclear reactor analysis codes nmayact be regarded as multi-physics
codes. However, of interest to us are recent dewedmts that have taken place in this field.
Over recent years, generic CFD and finite-elemealyais (FEA) codes have evolved into
very competent multi-physics platforms. Typical exdes of these codes are CFD-
FASTRAN (CFD-FASTRAN 2007), ANSYS Multi-physics (Ags MP 2007) and CFD-
ACE+ (CFD-ACE+ 2007), combining fluid mechanicslidestress and deflection analysis,
heat transfer and chemical reaction kinetics apleoumodules within the overall package.
To a large extent, these packages consist of aatwh of coupled modules. The coupling
between various fields may be either direct (implior iterative (explicit) (Waterman 2004),
depending on the complexity of the equations bealyed. Implicit coupling requires a
single matrix solution for all fields, while expiiccoupling sequentially solves the individual
problems, passing explicit values across the fietdrfaces and iterating until all solutions
converge. This explicit coupling is achieved by meeaf tailored third party interfaces. The
modules themselves are built on existing and wathtdished CFD codes, solid mechanics
codes, etc., the former of which are briefly dismdébelow. For reasons given below, modern
CFD codes can be regarded as multi-physics codds lztause of this, the historical

development and current status of this class oésade discussed in the upcoming sections.

2.2.1Computational Fluid Dynamics

The field of computational fluid dynamics (CFD) @ewith the solution of the set of partial-
differential-equations governing fluid flow, usiragcombination of mathematical modeling
and numerical methods. The basis of CFD is thestbomservation laws of mass, momentum
and energy, using a continuum approach (Fletch@®)L% should be noted that CFD, as it is
applied today, deals with many closely coupled maysphenomena such as fluid flow,
multiple fluid phase interactions, heat transfelhermical reaction kinetics and particle

transport. A modern CFD code may therefore be deghas a multi-physics code.



2.2.2 A Brief Background on Computational Fluid Dynamics

The U.S. National Committee on Theoretical and AggbMechanics gives a basic historical
overview of CFD code development up to the 1990S(WICTAM et. al. 1991). The first
methods for solving fluid flow using computationadethods were based on conformal
transformations of the flow around a cylinder towl around airfoil cross-sections. The
extension of these methods to three-dimensions lwaked, at the time, by the available
computing power. In 1966 the so-called panel methaltbwing the three-dimensional
solution of the potential flow equations, was figtesented. This method represents the
surfaces of the model geometry as several pankeseTmethods were largely developed by

the aircraft industries of the time: NASA, Boeihgckheed, etc.

Panel codes were followed by full potential codegshe mid to late 1970s. The potential
equations have limited applicability and with tigpaarance of more advanced computers in
the 1970s, the solution of the Euler equationslafifflow was considered. The upwind
finite-difference, finite-volume and finite-elememhethods were developed during that
decade. A number of commercial codes were developessponse, featuring multi-grid and
other fast direct or iterative solvers. Initialnly structured grids were considered, but over

time this was extended to unstructured grids.

In the 1980s the CFD service industry was createtithis expanded very quickly into the

1990s. The growth and development of CFD codesnaethodologies over these decades
followed that of computers. This growth was largdhiwen by target industries, the greatest
developments being seen in the aerodynamics, noahevieather prediction, acoustics and
fluid-structure interaction, propulsion systemsd aclear reactor design fields. This diverse
set of target industries has meant that CFD has hdepic of great interest for the past two
decades. Fletcher states that ‘perhaps the mostriamt reason for the growth of CFD is that
for much mainstream flow simulation, CFD is sigogfintly cheaper than wind-tunnel testing

and will become even more so in the future’ (Fletch990). A more recent description on the
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current status of CFD, and computational mechanigeneral, is given by Oden et al. (Oden

et. al. 2002).

When modern CFD codes are compared with the codetheo 1980s, there are vast
differences in functionality, capabilities, as walh ease-of-use. When compared with the
current generation of reactor analysis codes, theralso significant differences as a result of

historical influences. Some of these differencesdiscussed in the next section.

2.3Comparison Between Modern Computational Fluid Dynamics and
Reactor Analysis Codes

If we consider the status of development of reaatwlysis versus CFD codes up to the late
1970s, common trends are shared by both. By thg @880s common features of codes
included the use of finite-difference discretizatioon structured meshes, a linear
programming style in FORTRAN 77. Additionally, theupling of phenomena was generally
achieved by externally coupling existing solvefsorie considers the changes made in each

field since then, an obvious contrast emerges.

Modern reactor analysis codes employ methods ssitiheanodal and finite-element methods.
Only in a few cases are non-orthogonal unstructumeghes used. A code will generally
consist of several loosely coupled modules. Ihisresting to note that despite the availability
of more advanced programming languages such as RARD0/95 and C++, which support
structured and object-oriented programming featuresy modern reactor analysis codes are
still written in a linear fashion using FORTRAN 7@ne contributing factor is that the
licensing of new reactor analysis codes is a vane{consuming and drawn out process.

Developers are therefore reluctant to create nalesfrom scratch.

While the underlying theory has not changed sigaiitly, the methodologies used in CFD
analysis have changed substantially over the kst decades. Current commercial CFD
codes almost exclusively use the finite-volume méthTypical examples of such codes are

Star-CD (Star-CD 2007), Fluent (Fluent 2007) andXGRnsys CFX 2007). These codes

11



provide robust multi-grid solvers for the three-dimsional heat and mass transport equations,
using fully unstructured meshes. Non-orthogonabtymesh cells is compensated for. The
solvers are often extensible to allow for the soluf different classes of problems such as
chemical reaction kinetics. Easy-to-use graphicséruinterfaces are provided for pre-
processing, post-processing and the managemenaladilations. Modern CFD codes are

almost exclusively written in an object-orienteddaage such as FORTRAN 90 or C++.

Despite obvious differences in the physics beinglefied, it is clear that the field of reactor
analysis would potentially benefit by taking catefdvantage of the advancements which

have been made in CFD and other general multi-pby&lds over the years.

2.4 Object-Oriented Programming

Rumbaugh et al. defines object-oriented programni@®@P) as programming in terms of a

collection of discrete objects that incorporatehbddta and behavior (Rumbaugh et. al. 1991).
Historically, a program was viewed as a logicalgadure that takes input data, processes it,
and produces output data. In this context, the naragiing challenge was seen as how to
write the logic, not how to define the data. Objesented programming takes the view that

what we really care about are the objects we wandnipulate rather than the logic required
to manipulate them. This is not to say that theclog longer has importance but rather that,

in the object-oriented context, each object isoesfble for its own logic.

Object-oriented programming was initially conceived the 1960s in response to the
increasing complexity of hardware and softwareaystat the time (Meyer 1988). An object-
oriented approach to programming was conceptualipedmprove the quality of large

complex hardware and software systems.

FORTRAN 77 is the classical scientific programmilajmguage on which most reactor
analysis code systems have been developed in HteTgas programming standard has been
rendered obsolete by the more advanced FORTRAN Bainerd et. al. 1996) and

FORTRAN 95 standards, both of which include enhare@s and extensions over
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FORTRAN 77 for high-level scientific programming.hdse enhancements include the
support for a number of object-oriented concept® primary reason for the popularity of the
FORTRAN derivatives in scientific programming itlease with which multidimensional

arrays and matrices can be manipulated. The FORTR&MNatives, however, do not have

full support for all object-oriented features.

While scientists would argue that a language sc&+ is not suitable for scientific code
development and dedicated programmers would ardis@ EFORTRAN 90/95 is too
restrictive, it is clear that an object-orientegigach, which is supported by any number of
modern programming languages, provides signifieaiviantages for both code development

and maintenance.

2.5Multi-physics Toolkits

Numerous multi-physics toolkits (scientific compiga frameworks) currently exist,

providing general users and scientists flexiblegfpiens on which sets of equations may be
formulated and solved. Often these frameworks rglyte heavily on object-oriented

structures and techniques to provide flexibilityrfer 2004). The C++ language is often
used as the basis for these frameworks for thisorealn the domain of FORTRAN-based
programming languages, the concept of modular tsoik found. One such environment
(Filippone et. al. 1999) provides for the distribditsolutions to general problems. With such

modular toolkits, however, the user is often regtd to a fixed set of features.

The Open-source Field Operation and Manipulatiopef@OAM) C++ class library (Weller
et. al. 1998) provides a framework on which rekalhd efficient computational continuum
mechanics (CCM) codes may be developed. Prioritgglreleased into the public domain the
framework was known simply as FOAM and thereforethis text, the terms FOAM and
OpenFOAM are used interchangeably. The framewoskidegen developed such that the top-
level syntax of the code resembles closely the entional mathematical notation used to

represent tensors and partial-differential equati@@DES). As an example (Weller et. al.
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1998), the fluid mechanics mass conservation eguatiay be written in the mathematical

form as shown below.

where@ = pU, U is the fluid velocity vectorp the fluid density and the time.

The solution to this equation is programmed in FOAd/hown below.

fvMatrix<scalar> rhoEqgn

fvm::ddt(rho)
+ fvc::div(phi)

rhoEqn.soIve();
In the above code, the variables andphi are FOAM objects, based on the object-oriented
concepts introduced in section 2.4. Each contaiispatial- and time-dependent definitions
for the variables they represent. This high-lewgresentation of equations allows for easy
error-checking and rapid implementation of solvé&dditional detail on the internal FOAM

representation of these objects is provided in ek

The framework was initially developed for the sauatof CFD problems using the finite-
volume method, but has been successfully usechésolution of other classes of problems
such as solid material stress modeling and magmgtoedynamics. More recently, the
framework has been applied to the typical multigby problems of fluid-solid interaction
(Jasak 2006). The object-orientated structure ef flamework is such that extensions
(discretization schemes, boundary conditions, dt)new classes of problems may be
introduced without any modification to the existiogde. The framework is flexible enough
that new functionality may be implemented at bbi lhigh level (tensors, PDES) as well as at
the low level (matrix solvers, acceleration methoeks.), thus making it suitable for both

research and production versions of a solver.

The FOAM framework provides many of the featuresmaldly found in today’s commercial

CFD packages, namely steady-state and time-depefidge-volume solutions on arbitrary
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unstructured meshes, with non-orthogonality coiectas well as multiple time and spatial
discretization schemes. Further detail on the stracand functionality of the FOAM

framework as it pertains to this research is gimechapter 3.

2.6 Closure

In this chapter introductions were given to theaapts of reactor analysis and multi-physics
analysis. As part of this, the TINTE code was idtrced as an example of a time-dependent
multi-group diffusion solver. Further, a comparissas made between the development and
current status of reactor analysis and generalispljtsics codes. From this comparison it
was shown that the field of reactor analysis coubdentially benefit from current multi-
physics methods. The concept of an object-orieapgatoach to software development was
introduced. This then led on to an introductionotgect-oriented multi-physics toolkits, in

particular the OpenFOAM toolkit. This toolkit issgussed further in the chapter 3.

15



3. THE FOAM FRAMEWORK

The Field Operation and Manipulation (FOAM) frametyowhich was briefly described in
section 2.5, will now be discussed in more defail.emphasis is placed on the framework’s
functionality as it pertains to this research. &mtggular, an attempt has been made to provide
examples relevant to neutronic calculations. Fonaae comprehensive description refer to

the FOAM Programmer’s Guide (OpenFOAM PG 2005).

3.1 Tensorsand Fields

In FOAM mathematical equations are representedgugnsors of varying rank. The most
commonly found in nuclear and CFD calculationstaresors of rank O and 1, namely scalars
and vectors. In FOAM a ranked tensor can be akkatdimensions; in this way, dimension

checking is carried out for all operations.

The field class is the basic container class fatass, vectors and higher rank tensors. Spatial
discretization is handled in FOAM using the finielume method. A three-dimensional
unstructured finite-volume meskvNesh ) is defined, consisting of any number of discrete
cells. This mesh object, when associated with ld fi¢ tensors, is sufficient to describe the
spatial distribution of the tensor over a given @im Consider the scalas(r,t), which has
both spatial- and time-dependence. This variablegnvassociated with a mesh, will have

discrete scalar valueg(t) within each cell. Similarly if the time-domain discretized into

the current timet,, old timet,, and any number of older time points, the fullgadetized

representation for the scalar can be writigh ¢°, @™, etc. FOAM therefore defines fields

of tensors at each point in time. In FOAM termirgipthe combination of a dimensioned
tensor field at a discrete time point with a giveesh structure at the same time point is
called a geometric field. Each geometric field ssaciated with its predecessors, i.e. the
geometric field at previous time points. In FOAMgaometric field of scalars is termed a

volScalarField , and a geometric field of vectorsyavectorField
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FOAM includes the functionality to perform any nuenbof operations on fields and
geometric fields, including negation, addition, ension, multiplication, trigonometric

functions, cross-products, etc. depending on timik & the tensor. This allows algebraic
manipulation of the ranked tensor fields. The FORKbgrammer’s Guide (OpenFOAM PG
2005) contains a more complete list of supportegrapns and functions. This functionality
has been achieved in FOAM using C++ overloadedatpes and functions. As an example,

consider the typical example of the buildup ofssifon product over time in a constant flux.

m

N, = Nye ™ +%(e% -1)

where
N, and N, are the isotope concentrations at the end andddtire time interval
y and A are the isotope fission yield and decay consespeactively

F" is the fission reaction rate

A is the time interval

In FOAM, the coding for this would resemble thategi below.

N = N.oldTime()*EXP(-lambda*deltaT)
+ F*gammal/lambda*( EXP(-lambda*deltaT)-1);

Here the concentratioxy at time 1, andi.oldTime() , at time 0, and the constant fission rate
F are geometric fields of dimensioned scalaosstalarField ). In this way the clumsiness
traditionally associated with array operations i+Chas been removed and replaced by a
functionality similar to that of FORTRAN 90, wheoperations are carried out for entire

blocks of data.

3.2 Spatial Discretization

The solution domain is discretized to form a corafiahal mesh, consisting of many discrete
control volumes or cells. Each variable is printijpdefined at the cell volumetric centres.
FOAM makes use of an arbitrarily unstructured méishs any number of cells of any shape

are allowed. The only limitation on this is thatht@!| volumes may not overlap and they
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must completely fill the solution domain. A typicalesh structure and computational cell is

depicted in Figure 1.

Figure 1. A Typical FOAM Mesh and Computational Cell

Each computational cell is defined by several fdoawing the cell boundary. The faces may
be shared between cells, or alternatively lie andatige of the domain, forming a boundary.
Each face, in turn, consists of a number of vestideface may be shared by two cells, in the
case of an internal face, and a vertex may be dhayeany number of faces. Each face is
therefore constructed from any number of verticesaoflat plane. The full geometric
definition of a mesh consists of a list of verticadist of faces based on vertex IDs, and a list
of cells based on face IDs. For these, FOAM defthesgointList , faceList andcellList

classes.

Additionally, the boundaries of the model must efirced. For this FOAM provides the
polyPatch  class, where eaglvlyPatch  object represents a cell face on the solution doma
boundary. It is typical in CFD applications to aefiboundaries on a global scale, e.g. for the
simulation of flow in a tube, one would define tabe walls, the tube inlet and the tube outlet
as global boundaries. Typically, on the discretipeeish, each of these global boundaries
consists of several boundary cell faces. This cotla of polyPatch  objects is contained in a
polyPatchList object representing one global boundary. All gldbaundaries on a mesh

are grouped together into a singl@yBoundaryMesh  object. The complete finite-volume
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mesh definition, including the list of points, facand cells, as well as the boundary

definitions is contained infaMesh object.

3.3 The Finite-Volume Method and Discretization
Consider a simplified representation of the diffusiequation involving the scalar neutron
flux ¢.

-0+ (DOg)+Z@=S,
For the purposes of this explanatidd, > and S, are considered arbitrary constants. The
finite-volume methodology may be applied to this\@ervation equation by integrating the
equation over a discrete control voluie in this case the computational cell. This control

volume integration is the key step which distingess the finite-volume method from other

numerical methods (Versteeg and Malalasekera 1995).
~[ 0+ (DO@)AV +[ Zgdv =] s,dv
For the diffusion term, one may apply Gauss’ theote transform the volume integral to a
surface integral. For other terms the propertiesaasumed constant over the control volume.
~[ (DOg)+ dA +3vp=Sy
Here A is the control volume surface area vector anthe surface of the control volume.

The control volume is assumed to be bounded byramgber of flat faces. The surface

integral can be written as a sum over each ofdhed.

—ij (DOg)s dA +5Ve=SyV

Here the subscripf denotes the cell face. The midpoint approximatan be applied at
each face, yielding the following.

->(DOg), « A, +5Vp=SV
f

where A, is the outward pointing face area vector. Thusnete that applying the finite-

volume method to a PDE results in an equation wnmgla sum over the cell faces. It is at this

point that assumptions need to be made regardiogepties at the faces. In the case above,
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the neutron currenD¢ at the face would need to be determined. It ighiat point that a
spatial differencing scheme is chosen (dDqu)f. Such differencing schemes generally

relate the value at the boundary to the cell cevditae and neighbouring cell values. These

schemes are discussed further in section 3.4.

For the case of time-dependent equations, theefistume approach requires a spatial as
well as a time integration. Consider now a simetifform of the time-dependent diffusion
equation.

19¢

—[e (DU =S
o (DOg)+zp=Ss,

Again, for the purposes of this explanatian, D, £ and S, are considered to be arbitrary

constants. Using the approach shown previously,rtay be written as shown.

19, -> (DOg), « A, +5Vp=SV
v ot r

or more simply
o¢
— = f(t,dt
= ta)

In the absence of analytical solutions to the tecorained withinf (t, ¢ft)), these values are

calculated at discrete points in time (Ferziger Redic 2001). If an explicit Euler (forward-
differencing) scheme is used, these values areuates at times for which the solution is
already known. A fully implicit scheme (backwardéerencing) evaluates these values at
times for which the solution is not already knowrhe Crank-Nicholson scheme is a
combination of forwards and backwards differencengd assumes that these values are
evaluated at some time in-between. The choice férdncing scheme affects the speed,
stability and accuracy of the problem. Fully egplischemes tend to be less stable while
requiring little computational effort. Small timetervals are necessary to achieve suitable
stability and accuracy. Fully implicit schemes argconditionally stable but require more

computational effort. In general, the resultingcdesized equation will have the form
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t, —t,

where the superscripts/subscripts 0 and 1 denetedlues at two consecutive time points.

After the PDE is fully discretized, a matrix equaatiis constructed. For an arbitrary PDE, this
matrix equation generally takes on the form

AD=S
Here A is a coefficient matrixS is a source term vector aml the vector of ranked tensors
being solved for. An important feature of FOAM iset automatic construction of the
coefficient matrix A and source term vectd® for an arbitrary PDE. This is handled in
FOAM using the classes of static functions contaimefiniteVolumeMethod , abbreviated
as fvm. Eachfvm function or operation returns faMatrix  object, which contains the
coefficient matrix and source vector contributioas, well as a reference to the geometric
field being solved for. The discretization methad to construct the coefficient matrix and
source vector is dependent on user input. Thigs@udsed further in section 3.4. Consider the
simplified form of the time-dependent diffusion atjon given below.

1d¢
~—*_-0«(DOg)+zp=S

Grouping the implicit terms (terms involving) on the left of the equation, and explicit terms
(independent ofz) on the right of the equation, the above equatiay be defined in FOAM

as follows.

fvMatrix diffusionEqn
) 1/v*fvm::ddt(phi) - fvm::laplacian(D, phi) + si gma*phi == S
Note that there is a distinction between the eXpdind implicit forms of expressions. In the
FOAM context, explicit refers to expressions tha ealculated using already known variable
values at the time they are requested. In genearakrics, these are often referred to as source
terms. Explicit terms contribute towards the soureetor S. In the FOAM context, implicit

terms refers to expressions involving unknowns, famadvhich a solution is required. These
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terms contribute towards the coefficient matdx. Implicit terms may be made explicit, if
necessary, and placed in the source term. Thisdymirharily be done to stabilize the matrix

inversion process, yielding the same solution bquiring iteration for convergence.

The fvm namespace functions aim, wherever possible, torret coefficient matrix with no
explicit terms, i.e. they aim to be fully implicin most cases, however, explicit sources are
unavoidable, resulting from non-linearity withinopfems. The use of higher order spatial
differencing schemes, mesh non-orthogonality ctioegcsolution under-relaxation and time

differencing, amongst others, will all contributevards the source vector.

As an example, thesm::ddt  operator, for the case of Euler time integratimeroa time

0
interval A, would evaluate tqulAJ. The coefficient matrix would in this case evatutd

1 o . " ; -
— on the main diagonal with a contrlbutlon% added to the explicit source term.

Consider also the case of the Laplacian (diffusi@mn [ e (Dan) which was linearised

previously.

Z(DD¢)f A

f

The face current(DOg), « A, may be approximated by the cell-centre-to-cellten

: & — 4, . .
gradient D, %ﬁ- A, whered is the cell-centre-to-cell-centre vector. Thusthe
. Df Af Df Af
case wheral is parallel toA; (orthogonal mesh), the termsd— and - are added

to the coefficient matrices for cells P and ispectively. Ifd is not parallel toA,; (non-

orthogonal mesh), an explicit source term contrdyuis necessary to compensate for the

non-orthogonality (Peric 1985) (Jasak 1996) (Fenzand Peric 2001).

A fully explicit equivalent toivm is provided by theiniteVolumeCalculus class of static

functions, abbreviated &g . All of the functionality ofivm is replicated irivc . In this case
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the expression is evaluated as-is using the cuwanes in each variable. Tihen functions
and operators provide the basis for the functibpashown in the example given in
section 3.1. A typical neutronic example would he talculation of cell neutron leakages

using the diffusion approximation.

Leakage = fvc::laplacian(D, phi);
The Laplacian operator is just one of the many ajoes provided by the framework. The
FOAM Programmer’s Guide (OpenFOAM PG 2005) providdsst of the available/m and

fvc operators and functions.

3.4 Numerical Differencing Schemes

Finite-volume integration produces equations tleguire us to make approximations for the
value and/or gradient of a ranked tensor at thief@e¢s. For this, one of numerous available
spatial differencing schemes may be chosen. FOABbWal the user to choose from many

differencing schemes for each PDE operator. Sihgjldine user has a choice of a variety of
time-differencing schemes, including Euler, backigadifferencing and Crank Nicholson. As

was the case for matrix solvers and boundary cmmdit custom numerical schemes may be
defined. Table 1 summarizes the classes from wbigdtom differencing schemes may be

derived.

Table 1: FOAM Base Classes for Numerical Differencing Schemes

Operator FOAM Base Class
Convection convectionScheme
Divergence divScheme
Laplacian laplacianScheme
Gradient gradScheme
Surface normal gradient snGradScheme
d/dt ddtScheme
d?/dt? d2dtScheme
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In the case of the spatial differencing, a surfaterpolation scheme is necessary to
determine the value at the face. FOAM provides isgve®mmonly used surface interpolation
shemes, including linear, harmonic, upwind and caizd upwind differencing, amongst
others. These schemes are derived fromsttigcelnterpolationScheme class. A custom

surface interpolation scheme may thus be derivaa this base class.

3.5Boundary Conditions

Boundary conditions (BCs) for PDEs are divided ithieee groups:

» Dirichlet BC - prescribes a fixed value at the badany

» Neumann BC - prescribes a fixed gradient at thenbary

» A combination of Dirichlet and Neumann boundaryditions
The FOAM framework makes provision for all of thieoae. A list of available boundary
conditions is provided in the FOAM Programmer’s Gui(OpenFOAM PG 2005). FOAM
does not, however, provide the typical albedo axtdapolated length boundary conditions

used in neutronic calculations. This issue is agklré in section 4.1.4.

A description of domain boundaries and their diszeel representation has already been
given in section 3.2. Some description is, howemecessary with regards to the treatment of
boundaries by the operators and the functions fiofteVolumeMethod and
finiteVolumeCalculus . When performing the discretization of equationmg it is
necessary to consider the contribution of the banndaces to the overall face sum in the
finite-volume discretized equation. Consider thecditization for the Laplacian operator

given in section 3.3. For this operator, it is reseey to define the gradielﬁﬂw)b at the
boundary face. For other operators it may be nacgss define the valug, at the boundary

face. Thus any boundary condition needs be ablgpézify both the face value and face
gradient as a function of the cell value. For tiH&AM provides thevPatchField class,
which in turn provides the necessary functionsaicuate boundary values and gradients for

a givenpolyPatchList . Custom boundary conditions may be defined byiegia new class
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from the fvPatchField class. Typical examples of this in FOAM are

uniformFixedValueFvPatchField andzeroGradientFvPatchField

3.6 Solvers

The solution of the matrix equatioRh® =S requires the computationally expensive inversion
of the coefficient matrixA . In generalA is a sparse matrix, containing a large proportibn
empty (zero) elements, and therefore the matridension may be accelerated using any
number of methods, including matrix preconditioningcFkOAM provides the
IduMatrix::solver class as the basis for inverting matrices, fronctvispecific solvers are
derived. Several matrix solvers are included in BQAor both symmetric and asymmetric
matrices, including a Gauss Seidel, an agglomeratpzbraic multigrid (AMG) solver tuned
to elliptic problems, an incomplete Cholesky pratibaned biconjugate gradient (BICCG)
solver, and several other sparse matrix solversaFnore complete list of available matrix
solvers, see the FOAM User’'s Guide (OpenFOAM UG 30@ustom solvers may be

defined by deriving a new class framMatrix::solver

3.7 Parallel Processing Support

FOAM supports the domain decomposition method #&ralel computing of large problems.

In essence, this method separates the spatial dantaiseveral smaller meshes. The solution
is obtained for each mesh, while passing dataeaséparated faces between processors. Data
is transferred using the Local Area MulticomputeAN) implementation of the standard
message passing interface (MPI) (Burns et. al. 19Bde procedure of running a case in
parallel requires three steps; decomposition ofitesh, parallel execution of the decomposed
case, and reconstructing the solution mesh andfdafgostprocessing. An important feature
of FOAM is that, by design, all newly developed liggiions automatically support parallel

processing using the domain decomposition method.
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3.8 User I nput

Neutronic calculations are renowned for havingéaagd complex input and output datasets.
It is therefore important that input and output lndled in an organized and structured
manner. This functionality is provided by the FOAdrary classes. The inner workings of

the FOAM library classes will not be discussed lagtan introduction to the structured layout
of input and output data, a brief description of A\D cases is provided here. For a more

detailed case description, the FOAM User Guide (Bf@AM UG 2005) may be consulted.

A typical FOAM case is given a name and stored divectory of the same name. Within this,
a number of subdirectories are required, spedictthe system , constant and time
directories. A graphical layout of this structueegiven later in 5.2. Theystem directory
contains information regarding the control and tygecalculation to be performed. The
constant  directory contains the mesh and fixed physicalpprtes for the system being
solved. In a typical nuclear calculation this wodulttlude nuclear data such as decay

constants, fission yields, etc.

Individual time directories are created at usewcsj@e time intervals, containing individual
files of data for particular fields and propertigtiese files are either supplied by the user or

are written by FOAM during program execution.

The input and output format of FOAM is designed cHiimally to be flexible. Data is
contained in individual files, and is organizedoinda number of dictionaries. These
dictionaries have a free format similar to thaCef+ code. Essentially each dictionary defines
a hierarchical data structure, allowing any numidifeinput or output objects to be specified
using keywords. This approach may be comparedatoafhother data storage libraries such as
the Hierarchical Data Format library (HDF5 2007hieh uses a multi-object file format and

allows a variety of different object types to berstl in a single file.
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3.9Closure

In this chapter, the OpenFOAM framework was disedds a certain level of detail. Included
in this discussion was an introduction to the &nblume method as a general equation
discretization method. An emphasis was placed erfirdmework’s functionality as it pertains
to this research. In particular, an attempt wasartadgorovide examples relevant to neutronic
calculations. In the upcoming chapter 4 a subsé¢tetheory of the TINTE code is rederived
and suitable solution algorithms are proposed ftim&-dependent neutron diffusion code.
This is done in such a way as to take advantagheofeatures of OpenFOAM discussed in

this chapter.
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4. THEORETICAL DESCRIPTION

This chapter includes rederivations of a subsetheftheory of the TINTE code (Gerwin
1987). In particular, the theory has been rewrittea form more suited for implementation in
OpenFOAM. The derivation of a higher order disaation for the group diffusion equation,
including delayed neutron treatment, is given irctise 4.1. Section 4.2 outlines the
modelling of saturation fission products such'&Xe. Section 4.3 describes the very simple
heat production model assumed. Section 4.4 desctiilealgorithms and solution methods to

be used for the numerical solution of the equatmfré 1 through 4.4.

4.1 The Few-Group Diffusion Equations

The time-dependent group-diffusion equation forgfienergy group is given below (Stacey

2001).

1 a¢ ' m
—— :DDQD% _(Zag +ng)¢g +zzgqg¢g‘+/¥p,g(1_ﬁ)P
Vg at g'¢g

5 (4.1)
+Z/Yd,g,l/1lcl +Q,
=

where
@, is the &' group flux

v, and D, are the § group mean neutron velocity and diffusion constant

respectively

2, and Z, are the § group macroscopic absorption and scattering-oasser
sections respectively

399 is the macroscopic scattering cross-section frapogg’ into group g

Xog @nd x,,, are the prompt and delayed neutron spectra fog'thenergy group
and [" delayed neutron precursor group

[ is the delayed neutron fraction per fission

A and C, are the T delayed neutron precursor group decay constanipeslirsor
concentrations respectively

Q, is a fixed external source
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The neutron production density tefaf' is defined as

m 1 m 1
P"=  VE"= VD 20, (4.2)
k k <

where

k is the effective reactor multiplication constakteffective), introduced to ensure
criticality of the steady-state solution

v is the total neutron yield per fission

F" is the fission rate density

2 isthe g™ group macroscopic fission cross-section

4.1.1Delayed Neutron Treatment

A small fraction of neutrons produced during fissare emitted with some delay after fission
has taken place. These neutrons are known as deteygrons and they are formed primarily
through the decay of fission products. Approximaté0 of the 500 total fission product

nuclides emit delayed neutrons (Ott and Neuholdb).98he accurate modeling of all these
delayed neutron emitting nuclides is a complex tas#t, for this reason, a commonly used
approximation assumes that the time-dependentradtbghaviour of the delayed neutrons is
well represented by six delayed neutron precursmus, as is shown in Equation (4.1). Each

delayed neutron precursor group is characterized pyecursor concentratio,, a decay
constantA, and a group delayed neutron yield per fissign. The group delayed neutron

fraction G, is defined as

g =2 (4.3)

wherev is the total net neutron yield per fission, defimgeviously
V=V, +V, (4.9)
Here v, is the prompt neutron yield per fission angl the total delayed neutron yield per

fission, defined as

Vg :ZG:VdJ (4.5)
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The total delayed neutron fraction is defined &ssihm of the delayed neutron fraction for all

precursor groups.

B=35 (4.6)

4.1.1.1Calculating Delayed Neutron Parameters for Fuel Mixures

The prompt and delayed neutron yields are dependenthe fissionable nuclide under
consideration. For materials consisting of a metunf fissionable nuclides, current
approaches use a fission rate weighting to cakeula effective delayed neutron yields for
the mixture. Based on simplified form of the CASMOHnplementation (Edenius and
Forssen 1989), the delayed neutron yield for a umebf isotopes may be written as shown

below.

Zvd,l i B
Va, :T

>y F"
=

S

4.7)

(4.8)

Here, the subscript denotes each fissionable isotope d&nl is the fission rate density for

each isotope in the material. The delayed neutrantibn may then be calculated using

Equation (4.3).

Z Vayi B

B =W (4.9)

It should be noted that, as is the case in the ENdde (Gerwin 1987), no attempt is made to

correct for the group structure during the calcatabf 3, i.e. the physicalg is used without

correction, regardless of group structure.
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4.1.1.2Delayed Neutron Data
The delayed neutron data supplied in the ENDF/Beaawcdata libraries (Chadwick et. al.

2006) is given for each fissionable isotopeThus values ford ; andv,,; are known. In

order to simplify the calculation, a common setsof decay constants for all fissionable

isotopes can be chosen, and the values/for recalculated using least squares regression.

These modified delayed neutron yields can be obtafinom a number of sources. Those

values used in the TINTE code are given in TablEable 3 and Table 4 (Clifford 2007).

Table 2: Common Set of Decay Constants for the 6 Delayed Neutron Precursor Groups

Delayed Neutron| ~Group Decay
Group Constant A,

3.87
1.4
0.311
0.116
0.03174
0.01272

oUW (N |-

Table 3: 1sotope-Dependent Fractional Fission Yield () of Delayed Neutrons

Fractional Fission Yield ([3) of Delayed Neutrons [%]
235U 232-|-h 23% 234U 236U 238U 239Pu 240PU 241PU 242PU
0.6904 2.3981 0.2962 0.4342 1.1698 1.7510 0.2245 2850. 0.5354 1.0524

Table 4: | sotope- and Group-Dependent Delayed Neutron Fractions (5, / 8)

Fractional Fission Yield (£, / ) for Delayed Neutron Precursor Group [%]
Group 235LJ 232Th 233'J 234U 236LJ 238'J 239Pu 240Pu 241Pu 242Pu
1 2.6 2.8 0.6 2.6 2.6 4.0 1.2 2.2 0.3 1.(
2 12.8 18.0 11.9 12.8 12.8 30.5 14.1 15)3 24.7 23.7
3 40.7 45.6 26.0 40.7 40.7, 37.1 31.0 32/8 32.1 39.1
4 18.8 16.0 27.0 18.8 18.8 13.d 26.3 2411 2211 18.9
5 21.3 14.1 25.8 21.3 21.3 13.6 18.6 18/1 15.2 12.9
6 3.8 3.5 8.7 3.8 3.8 1.2 8.8 7.6 5.6 4.%
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4.1.1.3Delayed Neutron Precursor Concentrations
The time-dependent behavior of each delayed negirecursor group may be represented by

the differential equation shown below (Ott and N&dHL985).

dc 1
d_tlziv“"': -AC, (4.10)

Where F"':ZFi’":Znggog is the material fission rate density (fission rager unit
i 9

volume). Here we include the eigenvalkig¢o be consistent with the Equation (4.2).

4.1.1.3.1Steady- State Case
For steady-state operation the time-derivative qunagion (4.10) is zero and the equation

reduces to

AC, :%Vd,l F" (4.11)

Where F" is the steady-state fission rate density.

4.1.1.3.2Time-Dependent Case
The derivation that follows is a slightly modifiédrm of that which is applied in the TINTE
code (Gerwin 1987). A linear time-variation in f@s rate and constant delayed neutron yield

per fission are assumed for a time interfat t, —t,. The fission rate density is written as

" " m —mi—1
F (t): I:0"'(|:1_|:o) AO

10t t,)

Substitution of this into Equation (4.10) allows ttime-dependent group concentration to be

solved for.

9C o c=1y,
dt k o
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The above equation is an ordinary differential ¢igmaof the first kindC, + p(t)C, = q(t).
The solution forC, (t) for time t >t, may be determined using integrating factors.
p(t) =A
— 1 m
Q(t) = EVd,l F (t)

The integrating factog(t) is found as follows.

U= e.[ J.Adt A (t-to)

The solution forC, (t) becomes

J' : pa(t)dt ) .[t: g(t0) i vy, F"(t)dt +C (t,)

CI (t) == u - e/‘| (t-t0)

Assuming, constant over the time-interval, this may be réemito solve forA,C, (t).

)I|C|(t): Alt to){/]C( )+/1 kaIJ-th /h(t to)}

AC() /‘C( ) (t tO)+%I/d| Fo(l e/‘l(t‘to))+ lA_AFO (e (t t0)+/1 (t t )_1):| (4 12)
- |
At t=t
"y 3
AG (tl) =AC! = /1|C|06_AIA +%Vd,| {Fom(l— e‘”'A)+ (Flm_ Fc;")%;m:[}
|
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The final expression for the precursor concentradéibthe end of the time interval becomes

_ 1 1-e™® 1-e™
ACl=ACle™ +=p |:F’"(——e“]+F"'[l— (4.13)
1™~ 1~ k d,l 0 /1|A 1 AlA

For the discretization of the time-dependent diffnsequation (in upcoming section 4.1.2),
an accurate expression is required for the intemedn precursor concentrations. The reason
for this is discussed in the upcoming section. Thierval mean neutron production is
calculated by a time integration of equation (4.42Jfollows.

AC :_J‘ dt{/] Cle At to)_l_%vd’l{lzm(l gl to)) F;’ AF"'( A lt) 4 ) (t —t ) 1)}}

_ 1 4 0 1 m F’"_ F()"’ A (t—to) m I:1’"_ Fom —_ —
_thodt{{Alcl ka|(F AI—AJ:|e +Vd,| l:o-l- AlA (AI (t tO) 1)

1 KT )
pumy A l 1 i 1 F m_ F m

+f! dt{i”‘“ LAY *lt-)- 1)}

m m -AA
|:/]| C|0 1 —Vy I(Fm— H-F jj| 1-e
_ 1 k A|A AI
A 1 . 1 F m_ Fm 1
+ka|F (t1_to)+EV d| ( [ )2]_(t1_t0)j

m_-m _ A AA m_—m 2
act-ty [Fr-B R e L) ey, B R A A
iy K’ a8 )T A ke a2

m_=m _ A Al m_p-m
=|Ace- 1Vd. F F'-F')|1-e +1le Fre F, FO()ll_A_lj
K a8 )| an ke aA |2

_aAA _ oAb
:/]|C|01 e +1Vd||:0m 1- AA  1-e —1+ 1
AD Kk AA AD 2 AA
1 w AL 1 1
+—Vq F to -
k * AD 2 AA
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And finally

e‘M _ 1- e—A,A - 1- e—A,A
— 1-e™* 1 1 A A 1 A A
AC =A CO—+—V Fm 4+ | +Fm __—I (414)
T kM2 AD Y2 AD

4.1.2Time Discretization of the Few-Group Diffusion Equdions
The non-discretized form of the few-group diffusiegquation is given by Equation (4.1). The
production P” may be replaced by the fission rake", using the previous definition

P"’ - EIA:'" .
k

10¢, o 1 .
V_ ot _Dngwg_(zag+zsg)¢g+zzg g¢9‘+Xp’9EVpF
g g'2g

+IZ:)(d,g,|/‘|C|+Qg ’ g=1...,G

In considering a choice of time-discretization fbe above equation, one must consider the
accuracy requirements for each physical processgakace. We note that the required time
intervals may vary from fractions of a second tumes. Similarly, we note that the six
delayed neutron groups lie within this range ofetamtherefore it is important to treat the
delayed neutron terms with some accuracy. The al@oiv that follows, similar to that used in
TINTE (Gerwin 1987), is a manipulation of the d#gfan equation into a time-discretized
form, which pays particular attention to the dethyseutron treatment and assumes an
average rate of change for the time interval. Tihal foutcome of this derivation is presented
in Equations (4.21) through (4.24).

og. t) — —
We seek the solution to this equation for the azfsqugT() =g, , where ¢, is the average

time derivative over the intervél =t, —t,, such that

% = 0)+ 3, (4.15)
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We further assume that

_ %

We define the end-of-interval and start-of-interfeaictions

1 .
Re; :V_%(tl)

g

=0« |D,0 DI DI S99 + v, F"+ AC,+
( g (01) ( )(01 gZ#;; (01 ngk z)(dgl | Q (416)

and

1
Re; = (to)

g

=00 (0,08)~(Euy +Z o + T2+ VS K AC +Q,
g#g (4.17)

We may now write

2\ v

g 9

1— 1(1 . 1. 1
L0 -3 Labie L) eene)
Vv, % 2
Because the average delayed neutron precursor rdombens C, are known (derived

6 6

previously in section 4.1.1), we replace the te% Z)(d,g,|/]|c|1 + ZXd,g,IAICIOJ , contained
=1 =1

in E( Re. +Re) ) with A, C, as given in Equation (4.14).

1 —
V_% _E( el+Re ‘Zngv‘ Ci- Z)(dgl/‘ Cloj+2)(dg|/]c
=1

g
1 6
ZE(Relg + Reg ZXd,g,l/‘lcll - Z)(d,g,l/‘lcloj
=1 =1

-AA

_ o _
6 1-eH 1 1 et -t /]eA -
+> /]CO—+—V Fo| =+ :
I:l)(d,g,l A0 Ko S A0
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1 - 1 0 6 6 6 1_e—/1|A
¢, =~| Rej+Re;—D X444 Ch _Z)(d,g,l/‘lclo +2Xd,g,l ACo—7—
Vy 2 I=1 I=1 I=1 A
oA 1-e™ 1_1—e‘”'A
1 m 8 /1 A 1 " 6 A A
+EFO ;Xd,g,lvd,l 1+2 i ! +EF1§Xd,g,IVd,I 1-2 )I,AI
1 0 % s 1-e™
== Re;‘* Reg_Z)(d,g,I/‘Icll _ZXd,g,I/‘ICIO 1-2
2 1=1 =1 /1|A
e _1-e?? , l-e™
1 m & AlA 1 m6 A|A
+EF0 ;Xd,g,lvd,l 1+2 A0 +E F lZ:l:)(d,g,lvd,l 1-2 A0

Equation (4.15) can now be used to solve—\;-l'elzﬁg (tl).
Y

g

1. 1 - o 6 6 1_e—/1|A
V_¢g(tl)+v_¢g(t0)=Re;+Reg_ZXd,g,lAlcll_é)(d,g,IAICIO 1-2

g g =1 /]IA
2D
1,8 eﬁA_ljl
m I
+EF0 IZ:l:)(d,g,lvd,l 1+2 A0
1,8 A
+EF1§)(d,g,|Vd,| 1-2 /],AI

Given thatvi ¢, (t,) = Re}, the equation may now be reduced.

9
1. S S 1-e™*
— @, (tl): Re]é_ZXd,g,IAICH _ZXd,g,IAICIO{l_Z j
Vg 1=1 1=1 /1|A
o 1-e® [ 1-e™
1 m 8 A A 1 " 6 A A
+EF0 ;Xd,g,lvd,l 1+2 /]lA : +_F1 ;Xd,g,lvd,l 1-2 /1|AI
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This may be expanded using the definition FRHfJ in Equation (4.16).

1 . . 1 5
VL t,)=0- (DQD@)_(zag +ng)¢’$ + 220+ X EVPFl +21:Xd'9")|'cl1 +Q,

g g'#g I=

6 6 l_e—A|A
_Z‘l)(d'g"/]'c'l_Z:)(dyg,l/‘lClo(l_2 A A j
1=1 1=1

|
s 1-e™® 1-e™A

1_
AD | 1,8 AN
+=FS v, |1-2— 2=

1 m 6
+E I:o ZXd,g,IVd,I 1+2
1=1

. 6 1_e—/1|A
=00 (0,00 )~ (5 +Zoy )8 + Y289 +Q, —Zxd,g,.A.Clo[l—Z j
=1

g'2g AlA
_1_e—/1|A
1 m 1 m 6 A A
+ Xog E|/pl:1 +E F, ;Xd'gwd'l 1—ZTA'

__AD
e—/||A_1 €
A A
A A

1 m 6
+E Fo ZXd,g,IVd,I 1+2
I=1

Vi%(tl) =[e (DgD%l)_(Zag -'-ng)(ag1L + ZZ§'~9%, +Qg

g g'#g
Y
1 6 - )leA
" _ |
+EF1 Xp,ng+|Z:1:)(d,g,|Vd,| 1-2 AA
-\ A _1_e_AIA

1 116 AA 6 1_e—/1|A
+EF0§Xd,g,IVd,I 1+2/1|—A| —é)(dngA'C'O(l—Z A
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Three factors may defined from the given equation.

» The new prompt production term is given by

1-e*®
: AL
VZ; :Xp,gvp +;Xd,g,lvd,l 1_2 AAl
= |

In terms of the delayed neutron fraction, this rhaywritten as

1-e™8
: Y.
Z; =Xp,g(1_18)+2)(d,g,llgl 1_2 I
= AA
» The old prompt production term is given by
-AA _1—8_/]'A
6 A
V2 = v, |1+2 :
Zg ;Xd,g,l dll A4

In terms of the delayed neutron fraction, this rhaywritten as

A
e—/l|A_1 €
A A
A A

6
Z; = ZXd,g,IIBI 1+2
1=1

» The delayed neutron source term is given as

§ 1-e8
Qug ZZXd,g,l/]lclo 1-2
=

AL

(4.18)

(4.19)

(4.20)

The fully time-discretized group diffusion equatiatith delayed neutron feedback may now

be written.
_— ' 1 m m
C";V Aqog_ =0+ (0,00 )- (5o +Z ) + 3 59-9¢} +Q, +E[Z$ L EQ VRS- Qy g
g g'#g
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This may be written in a simplified form

%~
e -0+ (p,0¢ )+ A =3 Co o8 +S,, 9=1..6 (4.21)
¢} g9#9
where
_ 11
Ay =Ty 4T =0 Ve (4.22)
C =ss-or ity g 4.23
g-gr T s 9 T g#g9 (4.23)
— 0 1 m
Sy =4y EVF" —Qqug tQq (4.24)

Equations (4.21) through (4.24) represent the fuiige-discretized set of multi-group

diffusion equations and are suitable for directlenpentation in FOAM.

4.1.2.1Steady-State Case

The steady-state forms of equations (4.18), (4ak®) (4.20) may be written by taking the

limit as the time interval\ tends to infinity, yielding the following.

{37 Xpg (1_i8)+Z)(d,g,lﬁl (4.25)
3= XagB (4.26)

=1
Qd,g = Z)(d,g,|/]|c|o (4.27)

=1

4.1.3The In-cell Spectrum Solution

In order to apply the predictor-corrector algorithmhich is discussed later in section 4.4.1.3,
a coupled solution for the group fluxes is requiredeach mesh cell. The derivation that
follows yields a matrix equation which may be usedolve for the coupled solution of the
group fluxes in a control volume, assuming a fixedkage through the control volume

surface.
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If we assume that the spatial dependence of thearetiux [« (DQD%) may be linearised
by defining buckling terms, a buckling terlB; may be used to replace the Laplacian

operator such that

0+ (0,00,)= 0,8, g (4.28)
Equation (4.21) may therefore be rewritten as
1 2 _ 1 _
E%_(DQBQ )%+A9¢;_ZC9'~9¢;'_V_A¢S+SQ’ 9=1...G (4.29)
g g'#g g
In matrix form, this becomes
-1 _ - g _
— DlBl2 +A -G, —Csy r S
A @ v,A
1 1
_Clﬁz — D2822+A2 _quz %1 —_ _(020"'82
V,A g = VLA
1 1
_C1ﬂ3 _Czﬂs Vg—A—D3|332+A3 | . VS_A%?'*'Ss

The above matrix equation is similar in form to #t®upled equations used for spectrum
calculations. The solution to the set of equatisngnstable in reflectors, and other regions
with low fission rates (Gerwin 1987). In these wtg, the absorption of neutrons is
significantly greater than the production. In or¢ierobtain a non-zero solution this must be
transformed into a fixed source problem. As a fasempt to bypass this problem, the cell
neutron leakage is included as an explicit soust@er than through implicit linearised

buckling values. This assumption may be appliedalbrcells within the solution domain,

regardless of whether they contain fuel or not. sTltle in-cell solution, in matrix form,

becomes
_VliA_,_Ai e, ¢, , 1 (ql _\/liAﬂo_Ll-FSl_
-c,, V%A+A2 -Cq., Zzl _ V%A@)"-Z”LSZ (4.30)
-C,, -C,, V%A+A3 : V%A@’—L3+Sg
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_ 2
whereL, =D B, ¢ , the leakage based on the guess valuw;for

4.1.4Eigenvalue Calculation

The effective reactor multiplication constant (keefive) is generally defined as the ratio of
neutron production to neutron losses. In the preseri delayed neutrons, the definition is
somewhat changed. We therefore consider the exddod® of Equation (4.21) in order to

calculate this value.

BB =0 (0,00)- (0 + 2 + 2000 40, + e cd-a,
VA ey k
This is rearranged to solve fér.
= JEVR" VR
(”;Vg_fg -0+ (0,0 )+ (5., +2, ) - %ZS'*Q’({JS. ~Q, +Qu,

This gives a definition for the local k-effective. The global k-effective is calculated using

domain and energy group integrated forms of th@den the expression above.

[ {i (crvem 2o VFC;')} dv

g=1

LSt [ mabi -0 o) T v o

g=1 g=1 g'#g
G G
+J-v ZQ“’Q dV_.[v ZQQ av
g=1 g=1
We note that the scattering terms between enegypgrcancel each other, i.e.

i(zsgca; - ZZS'~9¢;}:0

g=1 g'%g

The expression fok therefore becomes

([$emenda
k = o

I, {i @Vg‘fg}dqu {gzagqa; ~O (ng%l)} av+ |, [devg}dV'L E;Qg}dv

g=1
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We are generally only concerned with calculatingffiective for the steady-state case. In this
case the time-dependent term is zero. Also, themelintegral can be replaced by a discrete

sum over the mesh elements.

global
PP

- global global
Rloss + I:)d

(4.31)

The global prompt neutron production rate is define

P =Z{Z(Z o i+ VFJ')}V,» (4.32)

i Lot

The global neutron loss rate is defined as
G
RIS = Z{Zzaﬂé -0- (Dgwé)}vj (4.33)
i [o=t
The global delayed and fixed neutron productioa raidefined as
lobal S
Pdgo = Z{Z(ng +Qg )}Vj (4'34)
i Lot

In the above equations, the subscrpindicates the mesh cells.

4.1.5Boundary Conditions

The extrapolated length and albedo boundary camdit{BCs), commonly used in neutron
diffusion calculations, specify the neutron currahthe boundary as a linear function of the
neutron flux in the cell lying adjacent to the bdary. These cannot easily be defined using a
combination of Dirichlet or Neumann BCs, which reguixed values or fixed gradients at
the boundary. A mathematical description for eaththese BCs is derived in the next

sections, in a form which can be directly impleneeinin FOAM.

4.1.5.1The Extrapolated Length Boundary Condition

We consider a discrete unstructured mesh cell By an edge coinciding with the domain
boundary. Beyond this boundary, a vacuum is assumexlist. A widely used approximation
to this vacuum boundary for diffusion calculatiorss the extrapolated length boundary

condition (Stacey 2001). The extrapolated lengtindlary specifies that the neutron flux will
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vanish at some point beyond the boundary. Thusi¢wtron flux is zero at a given distance

Aoxrap PASt the boundary, wher,,,, = 0.7104x 3D . The boundary condition is depicted in

Figure 2.
¢A
P B o
O | | |
B e
N |
1 \\ 1 1
@ AR e 1e-
> : :
@© | i
° : . :
3 ¢=0 : : >
r:on ! AXPB\!/ Aextrap X

Figure 2. The Extrapolated Length Boundary Condition

The gradient at the boundar(\ﬂqo)B, is numerically approximated as

%%
(O9), e

This must correspond with the gradient from poiribBoint O.

¢s ¢ =O_¢B —_ ¢s
AV A A

extrap extrap

Rearranging this yields the neutron flux at therumary.
A

extrap

we + DXpg

y @ (4.35)

extrap
The gradient at the boundary may now be written as

-1

O =

y % (4.36)

extrap
Equations (4.35) and (4.36) are sufficient to fullgfine the extrapolated length boundary
condition in FOAM.
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4.1.5.2The Albedo Boundary Condition
The albedoa, the ratio of outgoing to incoming neutron currabtthe boundary, may be

used to determine the neutron flux within a mestoating to the following relationship

o) 42
@ B 2\1+a

Thus the flux gradient at the boundary may be writteectly as

1(1-a ¢ ¢
O =—= D.g =———
( ¢7)B ( j 8% Doy

(Stacey 2001).

Rearranging this yields the neutron flux at theriztary.

1

@ = - 3
1+;AXPB(1 ajDB (4.37)

1+

The gradient at the boundary may now be written.

_ 1(1—ajDB
2\1+a

1(1-a
1+~ D.A
2(1+aj a%es

(O¢), =

%

= %
2(1+ aj +Ax, (4.38)

From the above equations, it is possible to retage albedo boundary condition to an

equivalent extrapolated length,,.,, (see Section 4.1.5.1) using the expression

: -1[1_ajD (4.39)
albedo 2\1+a ° .

A

Equations (4.37) and (4.38) can therefore be reawriis

A

albedo % (440)

% =
Aalbedo + AXPB
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-1

Ok = —

; % (4.41)

albedo

Equations (4.40) and (4.41) relate directly to Ecuregti(4.35) and (4.36).

4.2 1odine, Xenon and Other Neutron Poisons

Certain fission products (Stacey 2001) will achastron absorbers and their formation tends
to reduce the global reactor multiplication constéireffective). Some of these fission
products are known as saturating fission produetsabse their half-lives are sufficiently
short that an equilibrium is reached between tpeaduction, decay and absorption during
normal reactor operation. These isotopes will inflteereactor operation in many cases such
as reactor startup, shutdown and power level clgaagd therefore their influence must be
taken into account. Of the saturating fission pmisluthe isotope$®*xe and**Sm are

generally considered the most important.

Xenon-135 has a large thermal absorption crosseseof approximately26x10°b and is

produced directly from fission and from the decéy“d. **1 is produced from the decay of
135Te, which is a direct fission product. The half-ife'*Te (19 s) is sufficiently small, that a
common approximation is to assume tHa is formed directly from fission with vyield

Y, = Ve (Stacey 2001).

Samarium-149 has a large thermal absorption crestis of approximately x10* b and is
produced by the decay 6fPm, which in turn is formed after the decay*tiNd. The half-
life of **Nd is sufficiently small (1.7 h) thaf®Pm can be assumed to be a direct fission

product with yieldy,,, = Vg -

In the cases of bothi°Xe and***Sm, as well as the isotopEsSm and™’Gd, the decay chain
may be represented as shown in Figure 3. Notarthats context, we refer to the production
and decay of the generic isotopkes- X, which can refer to any isotope pair that may be

modeled according to Figure 3.
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Figure 3: Transmutation Decay chain for a Generic Neutron Poison

The time-dependent concentration of the generiopmest X and | in the above figure may

be written in differential equation form.

%' )=y F"(t)-11() (4.42)
9 X W)=y P+ A (t)-[AX +Yon (t)jx(t) @43

The TINTE code models what are considered to bedbeimportant isotope pairs in short
term HTGR dynamics, namely™®l - '* Xe, *Sm-'*Pm, ™'Sm-"™"Pm and
BEu ™" Gd. Table5 summarizes the decay constants for thestope pairs as

implemented in TINTE.

Note that no assumption has been made regardinfisen yieldsy, and y,, or regarding

the group-wise microscopic absorption cross-sectibthe daughter isotope, ,. These

values are assumed to be provided as calculatprt.in
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Table 5: Decay Constants of | mportant Neutron Poisons Decay Chains

Isotope Pair Parent Isotope Daughter Isotope
Decay Constant Decay Constant
Isotope (1) /1| = Isotope (X) /]x =
1 1-135 2.88E-5 Xe-135 2.12E-05
2 Pm-149 3.63E-6 Sm-149 1.00E-30
3 Pm-151 6.88E-6 Sm-151 5.75E-09
4 Eul57 1.26E-5 Gd-157 1.00E-30

4.2.1Steady-State Case

For the steady-state case, the time-derivativesgumtions (4.42) and (4.43) are zero. The
steady-state concentration of the parent isotapay be written.

1=

F (4.44)

This may be substituted into equation (4.43) todyigle steady-state concentration of the

daughter isotopex .

(yX + yl ) m
X = F
AX +zax,g¢g (445)
g

4.2.2Time-Dependent Case

We assume a constant fission rate for the timevate\ =t, —t,.

F)=Fr=2(FreR), 00 )

" These isotopes are stable.
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Substitution of this into Equation (4.42) allows timee-dependent concentration of the parent

isotopel to be solved for.

S10)=rF"-A10)

t
1(t)=e™ (t’“’){l (t,)+ jdt' y,F"eh (t"t")}

%)

t
= e_/‘l (t_to){l otV E"’.[ dt'e/h (t'_to)}

to

—e™ (t—t0)|:| . +;/_I|Em(e/1| (t-to) _1)}

| (t) =1 0e_ﬁ' () 4 ;/—' E"'(l— g™ (t—to))

At the end of the time intervat €t,)

R w50

A solution may now be found for the daughter isetop, starting with equation (4.43). We

define
Ay = A+ 2. 0x s (4.47)
g

In the above definitiong, , and &g are assumed constant over the time interval. Eouati

(4.43) may now be written as

SXO) X0 =1 F+A10)

= yx Em + /1I Ioe_/h (t-to) + y| Em(l_ e_/]l (t—to))
= (yX Ty )Em + (/1| lo =V E"’)e‘”' )

This is an ordinary differential equation of thesfikind X + p(t)X = q(t). The solution for

X(t) for time t >t, may be determined using integrating factors.

p(t)=1,
q(t) = (yX +), )Ifm + (/1| Io -, Ifm)e_/h (t-t,)
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The integrating factog(t) is found as follows.

t t
L= ej'to p(t")dt _ eJ'tOAzdt _ e/‘z(t‘to)

The solution forX (t) becomes

e[l ) oy )t e )
t
X(t)= : P e/lz(t—to)

= e (¢ )+ [ ghliw) vy +V JF"+(A 1 yF"’ (=) gt
0 X | 1'0

to

=e‘”2““°’{x(to)+jf (e + 1 )P e+ [ (A1, =y Fm el s dt}

0 X(t)= e-*z(‘-to){x (t6)+ (v + 10 JF"[ €M+, 1, -y, F)[ " )(t“to)dt'}

The integrals may be evaluated and the equatiopligieal.

x(t):e-*zﬁ-w{x(to) R i R A (e“z-““-‘o’—l)}
2 2 |

A (t-to) A (tto) _ 4= (t-to)
) ml e +(A J/II:,"\e e
/]2 /]2 _/1|

= Xt )™ + 41 )F

At the end of the time intervat €t,) the daughter isotope concentration becomes

“AA A

(/1| o=V, m)%

X, = X 4y 4 JF" 27

(4.48)

2

4.3 Power Production

The time-dependent power production, including gide@at production, were not considered
for the FOAM implementation. As an approximatiofi, feeat produced is assumed to be
prompt and proportional to the fission rate.

Q"=EF" (4.49)

m

whereQ" is the power density anfl, the energy per fission.
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4.4 Solution Algorithms

In the preceding sections 4.1 through 4.3, a sedqofations has been presented in a form
suitable for implementing in FOAM. It is at thisipbthat we now consider the solution
strategy and algorithms that are required for thplémentation. Section 4.4.1 considers the
coupled solution of the neutron diffusion equati@ections 4.4.2 and 4.4.3 introduce the
complete algorithms for the steady-state and teamsicalculations respectively, and
section 4.4.4 describes the inner iteration, be. ¢oupled calculation of neutron flux and

neutron poison concentrations.

4.4.1The Solution of the Time-Dependent Few Group Diffusn Equations

The implicit solution of the set of equations definby equation (4.21) is not straightforward
using the present FOAM framework. While the framdwoeadily solves the ”@ group
equation, the framework does not directly handk ¢bupling between the different energy
group equations. The addition of this direct cauplto the framework is work in progress
(Jasak 2007). This is discussed further in sedid. In the present absence of this feature

an implicit solution for all energy groups requingsration, explicitly updating the source

contribution Z Bg.ﬂgqu;. at each step.
g'#g

The coupled solution of the few-group diffusion aions requires a suitable algorithm that
will ensure stability up to time intervals in theder of 60 s, using the present framework’s
features. This stability cannot be easily achieusthg an explicit coupling scheme. The
equations for the fast energy groups are a fadtapproximately a thousand stiffer than the
thermal group equations. The coupling of these o therefore poses a problem. This
stiffness difference is due to the differences ieam neutron velocity for fast and thermal

neutrons.

Similarly, the between-group coupling (neutron watg) forms a relatively large proportion
of the neutron source terms in each equation. Tovereone cannot assume that spectrum

effects are of secondary importance to spatialceffeThis presents a problem when
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implementing the few-group diffusion equation in A®@. The framework is specifically

tailored towards problems where spatial effectsidate.

The solution of the one-group time-dependent difflasequation may be carried out very

efficiently using just one line of code.
solve(1/v*fvm::ddt(phi) — fvm::laplacian(D,phi) + A *phi = S);

For more than one energy group, however, becaese ik currently no implicit block solver

in FOAM, a suitable algorithm for the implicit stilon of the group fluxes is required. Some

proposed options for this implicit solution areatdissed in the upcoming sections.

4.4.1.1Explicit (Forward Difference) Group Flux Coupling

The simplest algorithm is an explicit coupling dietgroup fluxes. Here the out-of-group

source terms are assumed to be dependent onleatat-of-interval fluxeg? , i.e.

ZBQQQ(DE?'
9?9
This approximation requires no iteration but isyostable for small time intervals. The

method also has limited accuracy, further requignmll time intervals.

4.4.1.2Implicit (Backward Difference) Group Flux Coupling
The numerical instability of the time-integratiomncbe ensured by using the backward-

difference algorithm. Here the out-of-group souerens are assumed to be dependent on the
end-of-interval fluxesy. , i.e.

z Bg'*gqaé'

g'#9

The problem, however, arises that the end of ialeituxes are not known and therefore an
iterative scheme is necessary to obtain a coumkdien. A spatially dependent source term
is assumed. For the first iteration, this is assiiteebe based on the start-of-interval fluxes.

Starting with the fastest flux group and workingwihoto the slowest group, the group
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diffusion equations are solved one-by-one to ob#airupdated guess for the end-of-interval
group fluxes. The updated guess fluxes are theth tasebtain an updated guess of the source

terms and the process is repeated until convergsratgained.

This algorithm is represented below using pseudteco

Guess group source terms
while not converged
for g=1,2,..., number of energy groups
solve gth group diffusion equation
end
update group source terms

check convergence
end

It is possible to improve the convergence of theliot algorithm using a number of
methods, including:

» If the source terms are updated directly followihg spatial solution of each group’s
fluxes, the updated source terms propagate faster the equation system and
convergence can be improved in this way.

» Successive overrelaxation may be used to improgerdte of convergence. Here, a

relaxation factora is choser(o <a< 2). Each updated group flux is calculated as
g=ag +1-a)¢f

where ¢ is the updated group flux, angf’ the solution to the ‘Ygroup diffusion

equation. The choice of factar greatly affects the rate of convergenceaIf |, this

method reduces to the standard backwards differgrsgheme.

If we consider the solution of the diffusion eqoatifor a single energy group, assuming the
between group terms to be fixed sources, it isrdlea this single equation gives an implicit
spatial solution, while the energy-dependence eatéd explicitly. Thus, this algorithm is

referred to as spatially-implicit.
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The explicit treatment of the energy-dependenceltesn very poor numerical stability,
largely due to the high stiffness of the fast egeggoup equations in relation to the thermal
group equations. This numerical instability mayyohk improved using a more advanced

energy coupling.

4.4.1.3Predictor-Corrector Algorithm

The stability problems associated with the spatiafiplicit algorithm of section 4.4.1.2 may
be improved by coupling this with in-cell spectrualculations (refer to section 4.1.3) for
each mesh cell to obtain a predictor-corrector tghgorithm. The spectrum calculation
implicitly couples the energy groups, and treats #patial coupling explicitly (through

buckling terms). It is thus referred to as an epémgplicit solution.

The predictor-corrector algorithm is representeldweaising pseudo-code.

Guess group source terms
while not converged
for g=1,2,..., number of energy groups
solve for gth energy group fluxes (spatially-impl icit)
end
update buckling terms
fori=1,2,..., number of mesh cells
in-cell spectrum solution for ith mesh cell (ener gy-implicit)
end
update group source terms

check convergence
end

This simple predictor-corrector algorithm is usedaa initial attempt to obtain a stable multi-

group flux solution. The implementation of a momvanced algorithm or block coupled

solution is considered outside of the scope ofréggarch.

4.4.2 Steady-State Eigenvalue Calculation
A pseudo-transient algorithm is used to calcul&ie @igenvalue and steady-state neutron
fluxes, as in the case of the TINTE code. Initidhg neutron flux profile is guessed. This flux

profile is assumed to be user-supplied. An ingigenvalue (k-effective) of unity is assumed.
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An artificial time interval is then chosen and tinedated neutron fluxes at the end of this
time-interval are calculated. These updated neuthaxes are then used to calculate an
updated eigenvalue. At each step, the reactor psmeormalized to a user-specified power
level. With iteration, the global reactor powerutren fluxes and eigenvalue will converge to

the steady-state values. This algorithm is depictdeigure 4.

4.4.2.1Reducing the Number of Iterations to Convergence

The TINTE code has an optimized controller whicteess’ the steady-state calculation, in
order to reduce the number of iterations requik@dcbnvergence. In order to simplify the
FOAM implementation, only one optimizing measur@pplied. The mean neutron velocities
of all energy groups are assumed unity for the tthmeof the steady-state calculation. This
eliminates the problem of stiffness differencesseein the diffusion equations for fast and

thermal energy groups, allowing large artificiahdé intervals to be chosen.

4.4.3Time-Dependent Calculation
A time-dependent calculation is an initial-valuelpem, and can only be carried out once the
reactor eigenvalue is known, and the steady-staleulation therefore precedes this. The
time-dependent algorithm is illustrated in Figure Hhe basic iterative strategy of the
algorithm shows only small differences from theadigstate algorithm of section 4.4.2.
These differences include the following.

» No normalization of the reactor power is performed.

» The eigenvalue (k-effective) is not calculated. Vhkie is kept constant following the

steady-state calculation.

» No outer iteration is required for each time-intdrv
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Start of steady-state
calculatior

\ 4

Calculate updated cross-sections
(Not implemented, i.e. fixed cross-
sections

A 4

A

Update delayed neutron production factors and putimiuy
Equations (4.25), (4.26) and (4.27)

\ 4

Simultaneously solve for neutron flux and
isotope concentrations at end of time interval
see Figure 6
(Perform inner iteration)

A 4

Calculate updated reactor parameters (fission rate,
neutron production, eigenvalue, leakage), Equatiér®y

and (4.31)
Next pseudo-transient
time-interval
A
\ 4

Calculate updated reactor power and normalize oeact
power, Equation (4.49)

A

y

Calculate updated delayed

neutron precursor coratemts,

Equation (4.11)

A

y

Check convergence of steady-state solution, based o
eigenvalue residu

No

Converged ?

Yes

Write steady-state results tg
file

\ 4

End of steady-state
calculatior

Figure 4: Algorithm for the Steady-state Eigenvalue Calculation
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Perform steady-state
calculation

A

y

A 4

Start of time interval
calculation

A

y

Calculate updated cross-sections
(Not implemented, i.e. fixed cross-
sections)

A

Update delayed neutron production factors and ptiaty
Equations (4.18), (4.19) and (4.20)

Next time
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A 4

Simultaneously solve for neutron flux and

isotope concentrations at end of time interval
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(Perform inner iteration)

A 4
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Calculate updated reactor parameters (fission ratp
neutron production and leakage), Equation (4.2)
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Calculate updated reactor power, Equation (4.49
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A 4

Write resu
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Its to file for

A 4
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Figure 5: Algorithm for Time-Dependent Calculation
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4.4.4The Inner Iteration
Both steady-state and time-dependent algorithmsineca simultaneous solution for the
neutron flux and strong absorber isotope conceaatrat For this, an inner iteration is used to

obtain converged values.

\ 4

Calculate diffusion equation coefficients, Equasion
(4.22), (4.23) and (4.24)

A 4

Calculate updated guess of isotope concentratioesdchof time
interval, Equations (4.44) and (4.45) (Steady-3tat¢4.46) and
(4.48) (Time-dependent)

A 4

A 4

Calculate updated guess of neutron fluxes at etichef
interval, solve the multi-group diffusion equation,
Equation (4.21)

A 4

Check convergence based on isotope concentrattbn §n
neutron flux residuals

Converged ?

A

Figure 6: Algorithm for the Inner Iteration

4 5Closure

In this chapter, a set of equations was presemtedform suitable for direct implementation

in OpenFOAM. These equations, based on the TINT&e coclude the discretized multi-
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group diffusion equation, and equations for delayeditron treatment, fission product
poisoning and power production. A set of algorithforsthe neutron flux solution, and for full
steady-state and transient solutions were propoBesel.OpenFOAM implementation, based

on the equations and algorithms of this chaptediscussed in chapter 5.
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5. IMPLEMENTATION DESCRIPTION

Based on the equations and algorithms proposetapter 4, a FOAM multi-group diffusion
solver, called diffusionFoam, was coded in C++.n8igant effort was devoted to ensuring
that an object-oriented approach to the coding fedlsewed. Specifically, the code was
modularized into a number of classes. In the istavébeing concise, detailed information on
all aspects of the implementation have not beerviged, however in certain instances
examples have been provided to illustrate the nisthused and to emphasise the advantages

of the FOAM framework.

5.1 Class Structure

In total, nine custom classes were created to mdiffetent aspects of the nuclear calculation
being performed. An attempt has been made, asfaossible, to separate the various nuclear
phenomena being modelled. In this way future dguakent will allow different models for
each phenomena to be applied, without introducmgeaessary complication. Class diagrams
for the diffusionFoam application are given in Fgu/ and Figure 8. A cross-reference
between the equations of chapter 4 and the diffiidam class and namespace members is

given in Table 6.

5.1.1nuclearField Class

The nuclearField class is primarily concerned with global nucleargmeters, such as k-
effective and global power production. It contaseveral childfluxGroup objects, each
responsible for the storage of the spatially- @ntktdependent scalar neutron flux and flux
leakage for a single broad group. Future developméhlikely see these broad group fluxes,
as well as calculations such as neutron productission rates, total leakage, among others
moved as children into separate objects. Similatypresent, power production is calculated
within this class. If decay and/or non-local poweoduction is to be taken into account this

should be included in a separate class.
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fluxGroup

crossSection_:
index_: label
leakage_: volScalarField
phi_: volScalarField

crossSection& {readOnly}

fluxGroup(fluxGroup&) +groups

nuclearField

IOdictionary

- Ef_: volScalarField
- F_: volScalarField

- fixedSrc_:
- globalDelayed_:

- globalPower_:

- groups_: PtrList<fluxGroup>
- keff0_: dimensionedScalar

- keff_: dimensionedScalar

- mesh_: fvMesh& {readOnly}
- omega_: dimensionedScalar
- P_: volScalarField

+nuclearField_ )

dimensionedScalar
dimensionedScalar
- globalloss : dimensionedScalar
dimensionedScalar
- globalProd_: dimensionedScalar

powerDensity_: volScalarField

+ fluxGroup(label, crossSection&, dictionary&) steadyStatePower_: dimensionedScalar
+ ~fluxGroup() 0.% 1
+ leakage() : volScalarField& {query} + F(: volScalarField& {query}
+ leakage() : volScalarField& + fixedSrc() : dimensionedScalar& {query}
- operator=(fluxGroup&) : void + globalPower() : dimensionedScalar& {query}
+ phi() : volScalarField& {query} + groups() : PtrList<fluxGroup>& {query}
+ phi() : volScalarField& + groups() : PtrList<fluxGroup>&
+ scalePower(scalar) : void + keff() : dimensionedScalar& {query}
+ sigma(): crossSection& {query} + keff0() : dimensionedScalar& {query}
+ updateLeakage() : void + mesh() : fyMesh& {query}
+ normalizePower() : void
1 - nuclearField(nuclearField&)
+ nuclearField(fvMesh&, crossSections&)
+ ~nuclearField()
+ omega() : dimensionedScalar& {query}
- operator=(nuclearField&) : void
+ P():volScalarField& {query}
+ storeAsOIld() : void
+ updateFissonRate() : void
+ updateKEffective(delayNeutrons&, fissionProducts&, bool) : void
+ updateLeakage() : void
+ updateNeutronProduction() : void
+ updatePowerDensity() : void
-nuclField_/\ 1 -nuclField_/\ 1
0.* 0.x
IOdictionary IOdictionary IOdictionary
crossSections fissionProducts delayNeutrons
- groups_: PtrList<crossSection> - isotopes_: PtrList<isotope> - factor0_: volScalarField
- mesh_: fvMesh& {readOnly} - nuclField_: nuclearField& {readOnly} - factorl_: volScalarField
- sigma_: volScalarField - groups_: PtrList<delayNeutronGroup>
- crossSections(crossSections&) - nuclField_: nuclearField& {readOnly}
+ crossSections(fvMesh&) - fissionProducts(fissonProducts&) - P_: volScalarField
+ ~crossSections() + fissonProducts(nuclearField&)
+ groups() : PtrList<crossSection>& {query} + ~fissionProducts() - delayNeutrons(delayNeutrons&)
+ mesh() : fvMesh& {query} + isotopes() : PtrList<isotope>& {query} + delayNeutrons(nuclearField&)
- operator=(crossSections&) : void + mesh() : fvMesh& {query} + ~delayNeutrons()
+ update() : void + nuclField() : nuclearField& {query} + factor0() : volScalarField& {query}
- operator=(fissonProducts&) : void + factorl() : volScalarField& {query}
1 + sigma() : volScalarField& {query} + groups() : PtrList<delayNeutronGroup>& {query}
+ updateConcentrations(bool) : void + mesh() : fvMesh& {query}
+ nuclField() : nuclearField& {query}
-crossSection_\|/1 0..* -products_ 1 - operator=(delayNeutrons&) : void
+ P(): volScalarField& {query}
crossSection 0.* + updateConcentrations(bool) : void
+__updateProduction(bool) : void
- A_: volScalarField isotope dela 1
- chi_: volScalarField -
- D_: volScalarField - conc_: volScalarField
- F_: volScalarField - lambda_: dimensionedScalar 0.
- index_: label - name : word
- mesh_: fvMesh& {readOnly} - parentindex_: label delayNeutronGroup
- nuF_: volScalarField B N
- S_: PtiListvolScalarField> - gfgzzg:‘:mii;ixxodumﬂ {readOnly} = beta’fvolScalarrield
_ v volScalarField C s = |ScalarField - delay_: delayNeutrons& {readOnly}
_ ld volScalarFild - index; labe
- yield_: L di "
+ AQ: volScalarField& {query} yield_: - lambda_: dlmensoneQScalar
L ) n - lambdaC_: volScalarField
+ chi(): volScalarField& {query} + conc() : volScalarField& {query}
+ 2;2:5523::::ET;E:ST:S;)I"?JMem& dictionary&) : ﬁzgg,’e‘:%s-cs(l,i?:{'eﬂ&) + beta() : volScalarField& {query}
+ ~crosSection( ' ' ' N V- gren - delayNeutronGroup(delayNeutronGroup&)
’ ) - isotope(isotope&) o + delayNeutronGroup(label, delayNeutrons&, dictionary&)
+ D(): volScalarField& {query} + isotope(word&, fissonProducts&, dictionary&) + ~dela
A h > yNeutronGroup()
(798 v EElEFEER (Errepy + ~isotope() + lambda() : dimensionedScalarg {
. . . : query}
+ mesh() : fvMeshé& {query} + lambda() : dimensionedScalar& {query} + lambdaC( : volScalarField& {query}
+ nuF() : volScalarField& {query} + name() : word& {query} o X o query)
q o N . ambdacC() : volScalarField&
2 CEEEESIE R VGl - operator=(isotope&) : void - operator=(delayNeutronGroup&) : void
+ S(): PtrList<volScalarField>& {query} + parent() : label {query} -
+ update() : void + sigma() : volScalarField& {query}
+ V() :volScalarField& {guery} + yield() : volScalarField& {query}

Figure 7: The diffusionFoam Class Structure
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-
| Type:class |
L |

fvPatchField

extrapolatedLengthFv PatchField

length_: scalarField
phiName_: word
+ TypeName: int

clone() : tmp<fvPatchField<Type> > {query}

clone(Field<Type>&) : tmp<fvPatchField<Type> > {query}

evaluate() : void

extrapolatedLengthFvPatchField(fvPatch&, Field<Type>&)
extrapolatedLengthFvPatchField(fvPatch&, Field<Type>&, dictionary&)
extrapolatedLengthFvPatchField(extrapolatedLengthFvPatchField<Type>&, fvPatch&, Field<Type>&, fvPatchFieldMapper&)
extrapolatedLengthFvPatchField(extrapolatedLengthFvPatchField<Type>&, Field<Type>&)
gradientBoundaryCoeffs() : tmp<Field<Type> > {query}
gradientinternal Coeffs() : tmp<Field<Type> > {query}

length() : scalarField&

length() : scalarField& {query}

operator*=(fvPatchField<scalar>&) : void

operator*=(Field<scalar>&) : void

operator*=(scalar) : void

operator+=(fvPatchField<Type>&) : void

operator+=(Field<Type>&) : void

operator+=(Type&) : void

operator-=(fvPatchField<Type>&) : void

operator-=(Field<Type>&) : void

operator-=(Type&) : void

operator/=(fvPatchField<scalar>&) : void

operator/=(Field<scalar>&) : void

operator/=(scalar) : void

operator=(UList<Type>&) : void

operator=(fvPatchField<Type>&) : void

operator=(Type&) : void

snGrad() : tmp<Field<Type> > {query}

updateCoeffs() : void

valueBoundaryCoeffs(tmp<scalarField>&) : tmp<Field<Type> > {query}
valuelnternal Coeffs(tmp<scalarField>&) : tmp<Field<Type> > {query}
write(Ostream&) : void {query}

B T T A T T S S S S S S S e S S 2

Figure 8: The diffusionFoam Class Structure (continued)

Table 6: diffusionFoam Member Function and Equation Cross-References

Reference Equation Class or Namespace Member
(4.2) nuclearField::updateFissionRate
nuclearField::updateProduction
(4.11), (4.13) delayNeutrons::updateConcentrations
(4.22), (4.23), (4.24) Foam::innerlteration
(4.18), (4.19), (4.20), delayedNeutrons::updateProduction
(4.25), (4.26), (4.27)
(4.21) Foam::transportSolve
Foam::groupSolve
(4.31) nuclearField::updateKEffective
(4.32) extrapolatedlengthFvPatchField::evaluate

extrapolatedlengthFvPatchField::valuelnternalCoeffs
extrapolatedlengthFvPatchField::valueBoundaryCoeffs

(4.33) extrapolatedlengthFvPatchField::snGrad
extrapolatedlengthFvPatchField::gradientinternalCoe
extrapolatedlengthFvPatchField::gradientBoundaryCoe

(4.44), (4.45), (4.46), (4.48) fissionProducts::updateConcentrations

(4.49) nuclearField::updatePowerDensity
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5.1.2crossSections Class

The crossSections  class is primarily a container class for the nautcross-sections and
other diffusion related constants. It is invisadkdt this class will ultimately include more
advanced cross-section library functionality sushttee collapsing of cross-sections, etc. A
single crossSection  object is defined for each broad energy group.hEagssSection
object is responsible for supplying the spatialgpendent macroscopic absorption, fission,
nu-fission, and scattering cross-sections, as agetiffusion constant, mean neutron velocity
and fission spectrum for a single broad energy gr@urrently, fixed value cross-sections are
used but the structure is in place for more advadncess-section calculations to be

implemented.

5.1.3delayNeutrons Class

The delayNeutrons  class is responsible for providing the delayedtno@uproduction terms
for the neutron diffusion equation. These inclutieady-state and transient spatial prompt
neutron production factors and the delayed neumaduction. The class contains one or
more delayNeutronGroup objects, representing each of the delayed neup@tursor
groups. Each precursor group object is responsible updating its own precursor

concentration.

5.1.4fissionProducts Class

The fissionProducts class is responsible for providing updated maapiscabsorption

cross-sections for, and calculating updated comnagoms of fission products. One or more
child isotope  0objects are defined, each representing a singteps. Each isotope object is
responsible for calculating its updated concermira@nd macroscopic neutron absorption
cross-sections. The current implementation is &dhito the iodine and xenon type neutron
poisons, with only a single parent and daughtetofg® The class structure is such that

detailed decay chain calculations could potentiadycarried out.
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5.1.5extrapolatedLengthFvPatchField Class

This class is derived from the FOAMMPatchField  class, providing the underlying code for
an extrapolated length boundary condition, idesdifby the keywor@xtrapolatedLength

in diffusionFoam. The internal operation of thesslawill not be discussed, however, it is
necessary to explain that eashrapolatedLength boundary condition is responsible for
updating its own extrapolated length values, gittle® name of aolScalarField from
which to obtain diffusion length valuesx{rapolatedLengthFvPatchField::phiName_ ).
This would, as a general rule, be the same nantieeadiffusion length associated with each

crossSection  object ¢rossSection::D_ ), although this is not enforced in the code.

While such flexibility may seem redundant in thise, since the extrapolated length will
always be a function of diffusion length, it sertesillustrate how more complex coupling

schemes may be achieved at mesh boundaries usiiglFO

5.2 User I nput

A brief description of FOAM input and output is pided in section 3.8. A graphical
representation of the structural layout of a typmi#fusionFoam case is given in Figure 9.
The diffusionFoam implementation takes full advgeteof the input/output libraries of
FOAM. In particular, each of the classes describedsection 5.1 is assigned a unique
dictionary in the constant directory, with the samaene as the class. This dictionary contains
all the necessary initialization data for the cl&@snsider, as an example, the following input

dictionary for theissionProducts class.
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isotopes

(

Xel35
{
parent 1135;
lambda lambda [00-10000] 2.116E-5;

yield yield Xel35;
sigma sigma_Xel35;

}

1135
{

parent none;

lambda lambda [00-10000] 2.883E-5;
yield yield_1135;

sigma sigma_1135;

}
}

Here, we can see that the decay chain of the isstdpXe and**J are defined, including
their decay constants and the names of the fisgald fraction and microscopic absorption
cross-section dictionaries for each isotope. Thog,number of isotopes may be defined in an

easily understood and readable format.

5.3 Known | ssues

For reasons discussed in section 4.4, the simeigior-corrector arrangement proposed in
section 4.4.1.3 was implemented as an initial gttetm obtain stable multi-group solutions.
This algorithm was found to be unstable for muitigp time-dependent calculations.
Therefore the current implementation allows timeetelent calculations in one energy group

only.
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Figure9: Structural Layout of a Typical diffusionFoam Case

5.4Closure

In this chapter, the implementation for the Open®DBBased diffusion solver, called
diffusionFoam, was described. During solver develept, significant effort was devoted
towards ensuring that an object-oriented approaa$ fellowed. This solver is known to be
unstable for time-dependent multi-group calculatiofh number of test calculations and their
results, using the diffusionFoam solver, are givechapter 6. Chapter 6 also includes further

discussion which is based on the knowledge gaiméki$ and previous chapters.
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6. RESULTS AND FURTHER DISCUSSION

In order to test the diffusionFoam implementatidnchapter 5, numerical solutions to a
number of test cases have been obtained usingtiee The test cases have been chosen so as
to envelop the main features of the code, and nigalesolutions are compared with
analytical or other numerical solutions. These cangons are presented in this chapter.
Section 6.1 includes initial steady-state compasstor simple one-group reactor models.
This is then extended to more advanced non-homageta-group reactor models in 6.2. In
section 6.3, short term and medium term dynamiestested for the cases of step reactivity
insertion and load-following. Additional discusssoaround the known issues of 5.3 as well

as around questions 2, 3 and 4 of Chapter 1 ahgded in section 6.4 of this chapter.

6.1 Steady-State Analytical Comparisons

Analytical criticality conditions are readily avallle for a number of simple geometries,
including spherical, block and cylindrical reactqiStacey 2001), for the case of fixed

uniform cross-sections. The criticality conditiorse given in terms of a geometric

buckling B,* as follows.

)2 (6.1)

wherelL = /ZR is the diffusion length.

These analytical benchmarks formed the basis diaintests carried out using the
diffusionFoam implementation. The geometric budimnd flux profiles for the three simple
geometries mentioned above, as well as chosewratriimensions for typical PWR cross

sections are given in Table 7.
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Numerical steady-state solutions were obtainedgugiffusionFoam for each of these cases,
where the analytical reactor is criticdt € ). The results are summarized in Table 8. From
the results shown, it is clear that the steadyesatver is operating correctly for simple cases,
with zero flux at the boundaries. In all cases, thkerence in k-effective between the

analytical and numerical solutions is sufficiensiyall that it can be attributed to numerical

discretization error.

Table 7: Criticality Conditions for Some Simple Bare Reactors

Sphere Block Finite Cylinder
Geometr c
y > N
h
b
Geometric Bucklin 2 2 2 2 2
g . my (m\ (m 2405\ (1Y
i =+ =] +] = =0 4+ =
Yo, a b c P h
Flux Profile 1. nr X Ty ITTZ 2405 Tz
—sin— COS— COS—> COS J, coS
r P a b c Yo, h
Diffusion Length D 10 cm 10cm 10 cm
Absorption Cross 0.15cm' 0.15cm 0.15cm
Section2
Nu-fission Cross 0.16 cnt 0.16 cnt* 0.16 cnt
SectionVZ ;
Critical Dimensions 99.35cm 200 x 150 x 177.1 cm p=120, h=128.43

Table 8: Summary of diffusionFoam Resultsfor Steady-state Analytical Benchmarks

Sphere Block Finite Cylinder
Mesh dimensions 50 radial 30 x30x 30 50 radidla&ial
k-effective 0.99999 1.00006 1.00001
Error [Ak x10°] -1 +6 +1
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6.2 Steady-State Benchmark Comparisons

6.2.1The Dodds Benchmark

The Dodds benchmark problem (ANL-7416 1977) istaoé@ure neutronic calculations for a
two-dimensional axisymmetric (r-z) reactor modetheTbenchmark is intended to test two-
dimensional neutron kinetics solutions, and coss@dt an initial steady-state eigenvalue
calculation followed by a supercritical transienithwsix-group delayed neutron feedback.
Relevant reactor parameters for the steady-stdteiladon are given in Table 9 and the

layout of the reactor is depicted in Figure 10.

Table 9: Dodds Benchmark Steady-State Parameters

Parameter Value
Number of radial meshes 18 (equally spaced)
Number of axial meshes 28 (equally spaced)
Number of broad energy groups 2
Reactor width 235.61 cm
Reactor height 524.87 cm
Boundary conditions Zero-flux
Number of material types 9
Number of material regions 16
Benchmark k-effective 0.867053

A steady-state solution to this benchmark usingTiNTE code is available (Strydom 2004).
Since the underlying theory of diffusionFoam isdzhen the TINTE code theory, the results

are expected to match closely.

For reasons discussed in chapter 5, the time-depérsblution to this two-group problem
could not be obtained with the currently implemenf@edictor-corrector algorithm. The
steady-state solution was, however, calculatedgudiiiusionFoam, using a mesh refinement
of six fine meshes per coarse mesh in both thelradid axial directions. Comparisons of

steady-state results with both the TINTE code &wedoenchmark reference result are given in
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Table 10 and Figure 11. The results of TINTE arffisionFoam compare very well. There is

an eigenvalue difference of less than10® between the two codes, and the flux profiles

show negligible differences.

0 117.8 1571 1963 2356
I I I I I
0 —
1
375 —
2
75 —
3 4 5
187.5 —
6 7 8 9
337.4 —
3 4 5
449.9 —
2
487.4 —
1
524.9 —

Figure 10: Dodds Benchmark Steady-State Reactor Layout

Table 10: K-effective Comparison for the Dodds Benchmark

Reference TINTE diffusionFoam
k-effective 0.867053 0.867433 0.867442
Difference [Ak x10°] - +38 +39

70



TL

Relative Flux

Relative Flux

(c) Thermal Flux Axial Profiles

——TINTE r=0
TINTE r=117.8cm
--%-- FOAM r=0
--X--FOAM r=117.8cm

——TINTE r=0
—— TINTE r=117.8cm
--X-- FOAM r=0

--X-- FOAM r=117.8cm

Relative Flux

Relative Flux

—TINTE z=131.2cm
TINTE z=262.5cm
--%-- FOAM z=131.2cm
--%-- FOAM z=262.5cm

r [cm]

(b) Fast Flux Radial Profiles

T T T T
0 50 100 150 200 250

r [cm]

(d) Thermal Flux Radial Profiles

—TINTE z=131.2cm
——TINTE z=262.5cm
--%-- FOAM z=131.2cm
--%-- FOAM z=262.5cm

Figure 11: diffusionFoam and TINTE Steady-State Flux Profile Comparisons for the Dodds Benchmark




6.2.2The OECD PBMR Benchmark

The Nuclear Energy Agency, within the Organizatifom Economic Co-operation and
Development (OECD), has published the OECD PBMRherark (Reitsma et. al. 2004), in
which a set of steady-state and transient calaumatfor the PBMR HTR are defined. The
reactor is modeled in two-dimensional axisymmetriz) geometry. A total of 190 nuclear
materials are defined in 580 nuclear calculatiogioms. The model layout is shown in
Figure 12. A two-group structure is defined. Thadienark defines the reactor geometry on a

structured rectangular coarse mesh, indicated tdgrdmes in Figure 12.

In this section, case 1 of the benchmark is comsdieThis is a pure neutronic steady-state
calculation using fixed cross-section sets. A mddelthe case was created using a mesh
refinement of four fine meshes per coarse mestoth the radial and axial directions. The
steady-state k-effective for this model was comghavéh TINTE results for the same case,
using the same mesh structure. These comparisorsalg done for the case of eight fine

meshes per coarse mesh. The results of these dsonmare given in Table 11.

Table 11: K-effective Comparison for the OECD PBMR Benchmark

Case Parameter TINTE diffusionFoam
Four fine meshes pel K-effective 0.99821 0.99745
coarse mesh
Difference [Ak x10°] - -76
Eight fine meshes pefr K-effective 0.99869 0.99803
coarse mesh
Difference [Ak x10°] - -66
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Figure 12: PBMR OECD Benchmark Steady-State Reactor Layout
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From these results it is clear that there is aetkffice of approximately 70 pcm between

TINTE and diffusionFoam results. Possible reasonsifese differences include:

» Differences between the discretization methods eygul by each solver. FOAM
employs finite-volume discretization while TINTE phays a variant of the finite-

difference discretization.

e The current diffusionFoam implementation does ngbp®rt directional diffusion
constants. For this reason, non-directional diffnstonstants in the void regions were

approximated, based on the specified benchmarlesalu

6.3 Time-Dependent Comparisons

As was discussed in section 5.3, the simple predadrrector solution algorithm of
section 4.4.1.3 was found to be unable to ensurgico stability for time-dependent multi-
group cases. In the absence of a block-coupledesolw time-dependent multi-group
solutions could be obtained using the current difiaFoam implementation. In order to
demonstrate the potential of the modern multi-ptg/sipproach to these classes of problems,

however, a number of time-dependent one-group lzdions were carried out.

6.3.1Short Term Dynamics - Reactivity Insertion

The bare sphere model of section 6.1 was modibaddlude delayed neutrons. The delayed
neutron parameters of Table 12 were assumed, andaa neutron velocity of 1¢° cm/s
was assumed. Calculations were then carried outhferfirst 10 s of reactivity insertion
events. Both positive and negative step reactiviggertions of 100 pcm and 200 pcm were
considered. Additionally, each calculation was e¢pd for the case of constant precursor
concentrations, so that the prompt jump could bewshwithout any delayed neutrons
influences. No supercritical insertion was congdebecause no reactivity feedback model
has currently been implemented in diffusionFoane Tésults of all reactivity insertion cases
are summarized in Figure 13. The numerical resalés compared with analytical prompt

jump approximation (PJA) solutions, which are dedvn the next section. These analytical
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solutions describe the initial jump and power geatiimmediately after the reactivity
insertion. The analytical PJA solutions overlaid dfigure 13 therefore only indicate the

initial response of the reactor. No comparisonseweade for later times.

Table 12: Delayed Neutron Parameters for Reactivity | nsertion Calculations

Group Decay Constant | Fission Fraction
I A [s1 B, x10°"
1 3.87 0.179504
2 14 0.883712
3 0.311 2.809928
4 0.116 1.297952
5 0.03174 1.470552
6 0.01272 0.262352
All - 6.904

The prompt jump is clearly visible in all casesll/daed by the slower response of the six
delayed neutron groups. For all cases of constalatydd neutron precursor concentrations,
the prompt jump is clearly visible and, as expected power remains constant after this
prompt jump. The results around the initial jumpmpare well with the analytical
approximations obtained in the next section. Dédferes are seen beyond 0.5 s because the
prompt jump approximation solution of the next gmttdescribes only the initial reactor

response.

Tvalues used are taken from Table 3 and Table Wt
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Relative Power

Time [s]
FOAM +200 pcm — — — - FOAM +200 pcm (const. prec.) PJA +200 pcm
FOAM +100 pcm — — — - FOAM +100 pcm (const. prec.) PJA +100 pcm
FOAM-100 pcm — — — - FOAM-100 pcm (const. prec.) PJA -100 pcm
FOAM -200 pcm — — — - FOAM-200 pcm (const. prec.) PJA -200 pcm

Figure 13: Time Plot of Relative Power for Subprompt-critical Reactivity I nsertions

6.3.1.1Analytical Comparisons
Analytical approximations of the initial power resge can be obtained using the prompt
jump approximation (PJA) (Ott and Neuhold 1985). a/follows is the calculation of the

expected response, based on this approximatiothdareactivity insertion cases.
The neutron generation tim® for the model is calculated as

A=— = 61 = 625x10°s
vz, 10°x 016

The simplified point kinetics equation, independehexternal sources is written

dQ_p-B,.1
WA QTALAG

76



where Q is the total reactor power and in the inserted reactivity. The precursor balance

equation is written

dd, _
H_ /]|Z| +ﬂ|Q

The prompt jump approximation (PJA) may be apptedletermine the initial jump after a

step reactivity insertion.

(QS] _ B (6.2)

The rate of change of power, following the reatyivhsertion and based on the point jump
approximation, may be calculated according to

dQ) _ Ap
(dt jPJA - QO (6:3)

where the single group decay constanis calculated according to

1
P |A|
/J,Zﬂ

A=
For the data of Table 12 = 0.435s™".

Solutions for the prompt jump and initial rate dfoge of power following the prompt jump,
Equations (6.2) and (6.3), are given in Table 18sE initial power curves are superimposed

on Figure 13 for comparison with the diffusionFogesults.

Table 13: Point Jump Approximation Applied to the Reactivity I nsertion Cases

Inserted Prompt Jump Initial Power Slope
Reactivity "
0 Q [@j

Q, PIA dt Jeon
+200 pcm 1.408 0.25
+100 pcm 1.169 0.0862
-100 pcm 0.873 -0.0481
-200 pcm 0.775 -0.0758

77



6.3.2Medium Term Dynamics — Load Follow

The OECD PBMR benchmark model of section 6.2.2 edsipsed to a single energy group
model for the purposes of running transients ugliffysionFoam. Case 4a of the OECD
PBMR benchmark (Reitsma et. al. 2004) was run uirggsingle group model. In this case,
the X&*° behaviour is modelled for a typical 100%-40%-1008d follow. The reactor,

initially at a steady-state power of 400 MW (100%);amped down to 160 MW (40%). After
three hours of operation at this level, the reacdothen ramped back to full power. The
control rods are kept at a constant position fer diaration of the transient and the global
reactivity is monitored. The benchmark calculatimeludes temperature feedback. This

feedback was not modelled in diffusionFoam.

At each time-interval in the calculation, the kesfive was updated according to
equation (4.31) and, based on this, an effectieball reactivity was calculated. The time
behaviour of global reactivity, as calculated ustifjusionFoam, is shown in Figure 14,

compared with the reference TINTE solution for ttese.

The time-scales of the reactivity response compaaig i.e. the maximum reactivity occurs
6 h after the return to full power in both caselsefe are significant differences (150 pcm) in
the magnitudes calculated by diffusionFoam and HNThese can be attributed to modelling
differences. The diffusionFoam solution was obtdibg assuming a step change in reactor
power, rather than the six minute ramp specifiethenbenchmark. No temperature feedback
was modelled. A single energy group was assumethédiffusionFoam calculation, which
was obtained by collapsing from the two-group syestdte solution of section 6.2.2. There
are also potentially differences in th&Xe and**3 yields because TINTE does not allow

custom values to be specified.
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Figure 14: Time Plot of Global Reactivity for Load Follow Transients

6.4 Further Discussion

The results of sections 6.1 through 6.3 have shihabhthe diffusionFoam implementation,

although still in an early stage of developmentapable of solving a number of general
reactor analysis problems. It is clear from thiattthe FOAM toolkit can successfully be

applied to the solution of the spatial- and timgeledent neutron diffusion equation. In this
section, we now turn towards answering questiord &)d 4 of section 1.1, which relate to
the advantages provided by a multi-physics tooklkitsh as FOAM and to implementing more
advanced functionality in the toolkit. Also inclwlén this section are discussions around

particular issues which were encountered duringlthelopment of diffusionFoam.

6.4.1Theoretical Modeling

Chapter 4 includes extensive derivations and dasons of the necessary equations and
algorithms for a FOAM-based multi-group diffusioahger, based on the TINTE code. In

almost all cases, there is no significant diffeeefrom the TINTE equations. Any differences
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have resulted from the multi-group assumption useldereas TINTE uses a two-group

assumption.

Of importance is that no expressions for modelimg ¢patial discretization were necessary.
FOAM is responsible for handling the basic finitgtwme discretization. This is quite an
advantage. If one considers the TINTE theoretieacdption (Clifford 2007), a substantial
portion of this is devoted to the spatial discratian and the matrix solver based on this
discretization. It is clear from this that an oltjeaented framework allows the developer to

approach the problem from a higher level than dieetional code development.

Further, if the same approach is applied to the-ascretization of the delayed neutrons and
saturation fission products, these too may alsafyoached from a higher level. In these
cases it will, of course, be necessary to introdsutiéable higher order time-discretization
schemes as options in FOAM. This will not necegsaimplify the theoretical description
but it will separate the task of implementing ah@igorder time-discretization scheme from
that of implementing the global solution algorithine, a first-order assumption may initially
be made and therefore the overall developmenteodver is not held back until such time
as this higher-order scheme is fully implemented tasted. The theoretical descriptions of
some higher order time discretization schemes @aadadle (Ferziger and Peric 2001), and
have been successfully implemented in other finitieine codes (Star-CD 2007). The
FOAM implementation of typical higher order timdfdrencing schemes such as the GAKIN
and 8 methods (Stacey 2001), used in reactor analyisejlgd be relatively straightforward

tasks.

6.4.2Block Coupled Solutions

For reasons discussed previously, the couplindhefgroup diffusion equations requires an
implicit coupling. This requirement has a number igiplications when considering
development on any framework. This discussion tdinated to multi-physics toolkits alone;

these considerations must be taken into accouartiymew solver.
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The multi-group diffusion equations represent acklpoint implicit set of PDEs, i.e. the
group fluxes depend on each other in the same catipoal point but each group flux
depends only on the neighbouring value of the sameegy group. We therefore have a block
matrix with many denseés x G matrices along the diagonal, and spatial coupliagtors

scattered in the lower and upper matrices, as tipin Figure 15.

N
N
N
N
N
N

Figure 15: Typical Block Matrix Layout for a Block-Point Implicit set of PDEs

By structuring the matrix in this manner, matrixeponditioning remains effective. In the
context of the FOAM and similar frameworks, howewbe construction and solution of this
block matrix requires additional effort. In partiay one must look at the method of
parallelization employed by the toolkit. FOAM usksmain decomposition for parallelization
of the solver and, in this case, it will be necegda invest additional effort into extending

this parallelization to block solutions.

Implicit equation coupling and block matrices aterently areas of development in FOAM
(Jasak 2007). The coupled solution of vector anddeequations is currently supported, and

block-point implicit coupling is likely to be avaible in the future.

6.4.3Higher Order Transport Methods

The diffusionFoam implementation is based on thiislon approximation. Up to now the
more advanced neutron transport methods or thepficapility to general multi-physics
toolkits has yet to be discussed. In exploringgbeential for the deterministic solution of the

neutron transport equation using multi-physics kel we will restrict ourselves to the
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discrete-ordinates (S-N) methods. Discussions ardbe spherical harmonics methods are
excluded because of their relative mathematicalpterity, but the principles discussed still
apply. The discrete-ordinates methods essentiadlyretize the angular domain (direction of
neutron flow) into a number of fixed directions ardinates. This is not dissimilar to the
multiple energy group approach; the number of cedigiquations now becomes multiplied by
the number of discrete ordinates. A simplified esgntation of the steady-state discrete-

ordinates equation is given below (Stacey 2001).
G ) K
Q O +O Wg =208 > Wlfoy +S.y, k=1...,K, g=1...,G
g'=1 k'=1

where
Q, is the K ordinate unit vector

¢, 4 is the angular flux for the'kordinate and'§energy group

o,,, 0379 are the 8§ energy group microscopic total and in-scatterirags-sections

t,g?
w, is the K" ordinate quadrature weight describing the betwaelinate scattering

dependency

S, s the source term including fission and fixedrses.
In the general neutron transport equation, theusiidin term is replaced by a streaming
operatorQ« O¢(,r,t). The angular domain is discretized into discretties Q, , chosen
such that they correspond with the angular fluggs The streaming operator is written as
Q Oy, (r,t). The operator is now in a form suitable for appdyiany of the finite-

difference, finite-volume, finite-element, etc. fimulations. FOAM does not currently include
this particular operator, however the implementatad this operator will be a relatively

straightforward task after a suitable finite-volufoemulation is derived.

Methods are also required to simplify the scattgnimtegral in the transport equation. A
common approach is to approximate the scatteringceousing Legendre polynomials

(Stacey 2001). Using this approach, the integraluces to a sum involving explicit
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coefficients (quadrature weights, ). No special treatment is required for these tewhen

applying the finite-volume or other methodologies.

It is clear that, provided a suitable discretizednfulation for the streaming term can be
obtained, the discrete-ordinates method is reaajilglicable to any general multi-physics

toolkit.

6.4.4Higher Order Spatial Discretization Schemes

The relatively large computational requirementsdeferministic reactor analysis have led
researchers to study methods of improving the caoatijpmal accuracy on coarse meshes.
This has led to the development of a number of dngitder spatial discretization schemes.
Of these, the nodal (Wagner 1979) (Lawrence anadingrl979) (Shober et. al. 1986) (Hutt
and Knight 1990) (Turinsky et. al. 1994) and firllement methods (Kang and Hansen 1973)
(Ciarlet 1978) (Lautard 1994) (Van Criekingen 20@vg in common use. Sutton and Aviles
provide a good general overview of the higher ordethods available for solving the time-

dependent group diffusion equation (Sutton andesvil996).

The nodal methods are ideally suited to latticeetgplculations where representative cross-
sections for each large node are obtained usingsaembly calculation. In this respect they
are used particularly in light-water reactor analysvhere a node can be defined for each
rectangular fuel assembly. The nodal methods haverglly been restricted to structured
rectangular meshes in the past. Recent develophenteen made into hexagonal nodal
methods for the cases of hexagonal lattice strastsuch as those found in VVER reactors
and block HTRs (Jin and Chang 1998) (Bangyang drmahgsheng 2006). This development

is, however, for the case of structured orthogomeghes.

For reactor analysis calculations using unstruckureeshes, the finite-element formulation
has more commonly been used (Lucas et. al. 20043.i% not to say that the finite-volume
method is not suited to reactor analysis probldRagher, if one takes the point of view that

the nodal, finite-volume and finite-element methotEn be written in mathematically
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equivalent forms, it is then possible to represkatfinite-element and nodal methods using a
higher order finite-volume discretization. A numlzérexamples of this generalized point of
view are available. For example, Grossman and Heénoansider the finite-element
formulation to be a general discretization techajgand as such have successfully applied it
to the nodal methods (Grossman and Hennart 200W)ilagy, Chavent combined the
advantages of the finite-volume and finite-elenmaethods into a single numerical procedure,
by using mixed-hybrid finite-element and Godunovisethods (Chavent et. al. 1997).
Numerous other studies have also been carriedntaithigher order finite-volume methods
and their relation to finite element methods (Bgeanet. al. 1996) (Aboubacar and Webster

2000).

These studies are generally not aimed at reactdysia problems, however, and research will
most likely be necessary to derive these higherrofthite-volume discretizations for
implementation in a finite-volume toolkit such a®A&M. FOAM provides many of the
features necessary for implementing such higheefodiscretization schemes. The FOAM
toolkit allows fields of values to be defined atl@®nters, mesh faces and at mesh vertices.

The stressFemFoam application is an example oiitefelement implementation in FOAM.

6.4.50ther Numerical Issues

Apart from the diffusion equation coupling problendsscussed in previous sections,
numerous other numerical problems were encountergthg testing and execution of

diffusionFoam.

» Steady-state convergence of the more complex madetdow. The TINTE code
system generally provides a converged steady-statdion with 50 iterations. The
diffusionFoam code currently requires significanttpre (several hundred) iterations
than this for convergence. This is largely becabsemaximum pseudo-transient time
interval is limited by solution stability in diffienFoam. More attention should be

paid towards optimizing the numerics of the stesidye solution. In particular, the
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pseudo-transient algorithm used by the TINTE camldcdcbe replaced with the a more

traditional fixed-source iteration method.

» The convergence of the inner iteration during toe@endent calculations requires
optimization. During the diffusion equation solutiBOAM, by default, adds a portion
of the prompt neutron production term as an expsicurce to ensure stability during
the matrix inversion. A properly converged solutitimerefore requires iteration
outside the matrix solution. This is done in theaniteration loop of diffusionFoam.
A more advanced method to linearise the promptraeyiroduction could potentially

improve the rate of convergence.

» The time-dependent and pseudo-transient steady-stdtulations were carried out
based on user-specified time interval values. Titeodluction of a time interval
controller, which optimizes the time intervals ldhgmn the reactor period and other
parameters, will assist in reducing the numberimattintervals required for a given

calculation.

The above problems are not specific to FOAM or atiner multi-physics toolkits. It is likely
that any new implementation, on any platform, wél¢uire significant effort to optimize the

numerics of the problem.

6.5Closure

In this chapter, numerical solutions to a numbertedt cases were obtained using the
diffusionFoam code. The test cases were chosers $o &@st the main features of the code,
from simple steady-state solutions to more complee-dependent solutions involving short
and medium term dynamics. The numerical solutioesewcompared to analytical or other
numerical solutions. In all cases the solver pentt adequately. Based on this we can

conclude that the FOAM implementation of a time-@wgent diffusion solver was successful.

The main numerical issues surrounding the diffusaam code were then discussed. The

potential for and issues surrounding the implentemaof a block solver in FOAM were
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discussed, as was the potential for implementingenamlvanced transport calculations and
higher order discretization schemes. In these d&ouns the potential for applying multi-
physics toolkits to other, more advanced, classegactor analysis problems is shown. In

chapter 7 the main conclusions from this and previthapters are summarized.
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7. CONCLUSIONS

The basic implementation of a time-dependent diffusolver was created using the FOAM
toolkit. This new implementation, called diffusicseem, includes models for delayed
neutrons as well as fission product poisoning Hyrséion fission products such aSXe.

Fixed value cross-sections were assumed. This rsalas shown to function well for two-

group steady-state calculations and one-group tiependent calculations.

In the development of this solver, a subset ofttie®mretical basis for the TINTE code was
rederived in such a way as to be compatible with BOAM framework. Based on this
theoretical description, a data structure was éefiand a number of container classes were
then created. The resulting implementation is eaangde of an object-oriented, multi-physics
approach to reactor analysis solver developmenilétthere is still scope for improvement
and outstanding issues, the key benefits and disddges of such an approach have been

explored to some depth.

The FOAM toolkit has shown great potential for tha@ution of general reactor analysis
problems. The initial literature survey showed FO#&be a general numerical toolkit, which
had the potential for solving reactor analysis s#gsof problems. Further research has shown,
rather, that the greatest benefit of using suchamdéwork is through the software design
approach applied. When creating a solver using sufthmework, the developer inherently
seeks to modularize the code. FOAM includes a firathber of container typesgalar ,
dimensionedScalar , Field Of scalar values and &ield of dimensionedScalar values.
Inherent to each of these objects is the functipnsd read and write data to/from file, for
mathematical expression evaluation and full eramdiing. The code developer is therefore
responsible for identifying how these variablegiatt with each other, and structuring them
SO as to take advantage of these interactions.dteiar that this object-oriented approach to
coding does provide advantages in terms of theldpweent and maintenance of complex

reactor analysis codes.
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The theoretical description of chapter 4 and furtiscussions in section 6.4.1 have shown
that the approach followed in deriving suitable a&ens for the FOAM framework is
virtually indistinguishable from the approach felled in the case of the TINTE code. A
distinguishing feature of the object-oriented apgtois that physical equation derivations are
carried out independently from those for the spatia time discretization schemes. Thus we
can see that in order to take advantage of thecbbjeented structure of the framework, it is

necessary to modularize the theoretical basis.

A number of test calculations were carried outabdate the accuracy of the diffusionFoam
solver.

» Steady-state eigenvalue comparisons were madbrfs simple bare reactors, namely
spherical, block and finite-cylinder reactors, ieacton 6.1. The numerical results
compared very well with the analytical criticalitpnditions for these simple reactor
shapes.

» A steady-state eigenvalue comparison was madééoDbdds benchmark problem, in
section 6.2.1. Here, both the calculated k-effecawnd flux profiles were shown to
closely match the TINTE results for this benchmarke k-effective also compared
well with the reference benchmark value (39 pcrfediince).

» A steady-state eigenvalue comparison was made dse d of the OECD PBMR
benchmark in section 6.2.2. Here small k-effectiiéerences (70 pcm) were seen
between diffusionFoam and TINTE solutions.

» Short term dynamics comparisons were made by nmogledi number of simple
reactivity insertion transients based on the orexgrbare sphere reactor model of
section 6.1. Positive and negative step reactivisgrtions of 100 and 200 pcm were
considered. The initial power response of the mracbmpared well with analytical
solutions, which were based on the point jump adpration.

» The medium term reactor dynamics was tested famals load follow calculation.
The two energy group model of section 6.2.2 wakapeéd to a single group model.

Based on this new model, a 100%-40%-100% load ioljloase 4a of the OECD
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PBMR benchmark) was calculated using diffusionFo@he results were considered

adequate in comparison with TINTE results for tame calculation.

Based on these tests, the diffusionFoam implementatas been shown to perform
satisfactorily, although a number of issues do nedak addressed. The structure is currently
in place for multi-group time-dependent solutiohst the fully time-dependent solution for
multiple energy groups will require the resolutiohseveral numerical issues. These same
issues would need to be resolved for the implentientaf a more advanced neutron transport

solver.

Of particular importance would be the need for@aklpoint implicit solver, as was discussed
in section 6.4.2. The fact that FOAM currently extds such a coupled solver may initially
seem to be a disadvantage, but one must consatearthefficient block solver would need to
be created or sourced for any new implementatiegandless of the underlying framework.
The lack of this functionality in FOAM should théwee not lead to the conclusion that an
object-oriented multi-physics approach is not sliie reactor analysis applications. Rather,
one should note that such functionality will neede implemented as it would for any other
framework. For this implementation, an object-otéeh design provides a number of
advantages. In particular, the implementation ofv rfanctionality in an object-oriented

framework will have little to no impact on the ady existing functionality. Additional

features may be developed in parallel without teednto continuously ensure that the final

code is synchronized, and that the new featuresampatible with each other.

The potential for more advanced transport solutas discussed in section 6.4.3. Here it
was determined that such solutions are feasibleyigeed that equivalent finite-volume
expressions for the spatial coupling can be deriMadsection 6.4.4, the potential for
implementing higher order spatial discretizatiorhesnes was discussed. This, again, is

dependent on the derivation of an equivalent fimdkime representation for such schemes.
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From the discussions and conclusions above, thectgs stated in section 1.1 have been
met. It has been shown that a modern object-oemtglti-physics toolkit can effectively be
applied to the solution of spatial reactor dynanposblems, and the potential exists for their

application to other classes of reactor analysblpms.

7.1 Future Work

It is proposed that certain additional researcledreed out to further investigate a number of

topics.

» Existing block solvers used in reactor analysiswafl as those specialized block
solvers already implemented in FOAM should be itigased further. The aim of
such an investigation would be to fully block caughe diffusion equation solution in
the current diffusionFoam implementation in a manoensistent with the existing

structure of the toolkit.

» There is significant scope for the developmentighér-order discretization schemes
using the finite-volume approach. Developments inthb time and spatial
discretization schemes should be considered. Stidmnees would provide advantages
for any number of classes of engineering problemaddition to reactor analysis

problems.

» A finite-volume implementation of the neutron trpog equation, specifically using
the discrete-ordinates method, would serve to tiis the flexibility of the
methodology. Such an illustration would furtheristsgn breaking down the existing
barriers between the reactor analysis classes olblgmns and other classes of
engineering problems. Integral to this research levdoe the derivation of the
equivalent streaming operator and required boundanyditions for the neutron

transport equation using the finite-volume approach

» The extension of the current diffusionFoam impletagan to include the feedback

effects of temperature and coolant density coulteqt@lly serve to illustrate the
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primary advantages of utilizing multi-physics franmeks. Such an extension would
require the close coupling of neutronic and therhnyalraulic fields. As discussed in
the introductory sections of this text, substangaslearch is currently directed towards
the topic of close coupling in reactor analysisciS@a coupling would contribute

valuable knowledge towards this topic.

The storage, retrieval and processing of raw nuale#a, based on libraries such as
the ENDF/B libraries, is a topic which requires stalntial attention in the future. In
particular, research into efficient and optimalrage, retrieval and processing of raw
nuclear data using object-based data formats suétD&5 and the FOAM file format
is recommended. Such storage formats are in lirie thie current object-oriented

approach to code development.
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