

OBJECT-ORIENTED MULTI-PHYSICS

APPLIED TO SPATIAL REACTOR DYNAMICS

by

I.D. Clifford

Mini-dissertation submitted for the degree of

MASTER OF ENGINEERING (NUCLEAR)

at the Potchefstroom Campus of the

North-West University

Supervisor: Dr. O. Ubbink

Co-supervisor: Prof. E. Mulder

November 2007

i

ABSTRACT

Traditionally coupled field reactor analysis has been carried out using

several loosely coupled solvers, each having been developed independently

from the others. In the field of multi-physics, the current generation of

object-oriented toolkits provides robust close coupling of multiple fields on

a single framework. This research investigates the suitability of such

frameworks, in particular the Open-source Field Operation and

Manipulation (OpenFOAM) framework, for the solution of spatial reactor

dynamics problems. For this a subset of the theory of the TIme-dependent

Neutronics and TEmperatures (TINTE) code, a time-dependent two-group

diffusion solver, was implemented in the OpenFOAM framework. This

newly created code, called diffusionFOAM, was tested for a number of

steady-state and transient cases. The solver was found to perform

satisfactorily, despite a number of numerical issues. The object-oriented

structure of the framework allowed for rapid and efficient development of

the solver. Further investigations suggest that more advanced transport

methods and higher order spatial discretization schemes can potentially be

implemented using such a framework as well.

ii

ACKNOWLEDGEMENTS

I would like to give my sincerest gratitude and appreciation to my

supervisor Dr. Onno Ubbink. This research would not have been possible

without your continued support, enthusiasm and patience.

To Prof. Hrvoje Jasak I also extend my sincerest thanks. Your assistance

with OpenFOAM was greatly appreciated.

Many thanks to my co-supervisor Dr. Eben Mulder, and to my colleagues

Frederik, Gerhard, Piet and Zain for your feedback and contributions.

And finally to my family and friends, in particular Héloïse… your

encouragement and understanding have been invaluable.

Ivor Clifford, 2007

iii

TABLE OF CONTENTS

 Page

1. INTRODUCTION... 1

1.1 RESEARCH OBJECTIVES... 2

1.2 OUTLINE OF DISSERTATION... 3

2. LITERATURE SURVEY... 5

2.1 NUCLEAR REACTOR DYNAMICS METHODS... 5

2.1.1 A Brief Background on Computational Reactor Analysis .. 6

2.1.2 The TINTE Code System... 8

2.2 MULTI-PHYSICS ANALYSIS.. 8

2.2.1 Computational Fluid Dynamics.. 9

2.2.2 A Brief Background on Computational Fluid Dynamics .. 10

2.3 COMPARISON BETWEEN MODERN COMPUTATIONAL FLUID DYNAMICS AND REACTOR ANALYSIS CODES. 11

2.4 OBJECT-ORIENTED PROGRAMMING .. 12

2.5 MULTI-PHYSICS TOOLKITS.. 13

2.6 CLOSURE... 15

3. THE FOAM FRAMEWORK .. 16

3.1 TENSORS AND FIELDS.. 16

3.2 SPATIAL DISCRETIZATION... 17

3.3 THE FINITE-VOLUME METHOD AND DISCRETIZATION .. 19

3.4 NUMERICAL DIFFERENCING SCHEMES.. 23

3.5 BOUNDARY CONDITIONS... 24

3.6 SOLVERS... 25

3.7 PARALLEL PROCESSING SUPPORT... 25

3.8 USER INPUT... 26

3.9 CLOSURE... 27

4. THEORETICAL DESCRIPTION .. 28

4.1 THE FEW-GROUP DIFFUSION EQUATIONS ... 28

4.1.1 Delayed Neutron Treatment ... 29

4.1.2 Time Discretization of the Few-Group Diffusion Equations .. 35

4.1.3 The In-cell Spectrum Solution .. 40

4.1.4 Eigenvalue Calculation .. 42

iv

Page

4.1.5 Boundary Conditions.. 43

4.2 IODINE, XENON AND OTHER NEUTRON POISONS... 46

4.2.1 Steady-State Case ... 48

4.2.2 Time-Dependent Case... 48

4.3 POWER PRODUCTION... 50

4.4 SOLUTION ALGORITHMS ... 51

4.4.1 The Solution of the Time-Dependent Few Group Diffusion Equations .. 51

4.4.2 Steady-State Eigenvalue Calculation ... 54

4.4.3 Time-Dependent Calculation.. 55

4.4.4 The Inner Iteration.. 58

4.5 CLOSURE... 58

5. IMPLEMENTATION DESCRIPTION.. 60

5.1 CLASS STRUCTURE.. 60

5.1.1 nuclearField Class.. 60

5.1.2 crossSections Class... 63

5.1.3 delayNeutrons Class ... 63

5.1.4 fissionProducts Class ... 63

5.1.5 extrapolatedLengthFvPatchField Class ... 64

5.2 USER INPUT... 64

5.3 KNOWN ISSUES... 65

5.4 CLOSURE... 66

6. RESULTS AND FURTHER DISCUSSION ... 67

6.1 STEADY-STATE ANALYTICAL COMPARISONS.. 67

6.2 STEADY-STATE BENCHMARK COMPARISONS.. 69

6.2.1 The Dodds Benchmark.. 69

6.2.2 The OECD PBMR Benchmark.. 72

6.3 TIME-DEPENDENT COMPARISONS... 74

6.3.1 Short Term Dynamics - Reactivity Insertion... 74

6.3.2 Medium Term Dynamics – Load Follow .. 78

6.4 FURTHER DISCUSSION... 79

6.4.1 Theoretical Modeling ... 79

6.4.2 Block Coupled Solutions... 80

6.4.3 Higher Order Transport Methods .. 81

v

Page

6.4.4 Higher Order Spatial Discretization Schemes.. 83

6.4.5 Other Numerical Issues .. 84

6.5 CLOSURE... 85

7. CONCLUSIONS ... 87

7.1 FUTURE WORK.. 90

8. REFERENCES.. 92

vi

LIST OF FIGURES

 Page

Figure 1: A Typical FOAM Mesh and Computational Cell... 18

Figure 2: The Extrapolated Length Boundary Condition... 44

Figure 3: Transmutation Decay chain for a Generic Neutron Poison47

Figure 4: Algorithm for the Steady-state Eigenvalue Calculation ... 56

Figure 5: Algorithm for Time-Dependent Calculation .. 57

Figure 6: Algorithm for the Inner Iteration .. 58

Figure 7: The diffusionFoam Class Structure .. 61

Figure 8: The diffusionFoam Class Structure (continued)... 62

Figure 9: Structural Layout of a Typical diffusionFoam Case... 66

Figure 10: Dodds Benchmark Steady-State Reactor Layout ... 70

Figure 11: diffusionFoam and TINTE Steady-State Flux Profile Comparisons for the Dodds

Benchmark .. 71

Figure 12: PBMR OECD Benchmark Steady-State Reactor Layout 73

Figure 13: Time Plot of Relative Power for Subprompt-critical Reactivity Insertions 76

Figure 14: Time Plot of Global Reactivity for Load Follow Transients..................................79

Figure 15: Typical Block Matrix Layout for a Block-Point Implicit set of PDEs................... 81

vii

LIST OF TABLES

 Page

Table 1: FOAM Base Classes for Numerical Differencing Schemes 23

Table 2: Common Set of Decay Constants for the 6 Delayed Neutron Precursor Groups 31

Table 3: Isotope-Dependent Fractional Fission Yield (β) of Delayed Neutrons.................... 31

Table 4: Isotope- and Group-Dependent Delayed Neutron Fractions (ββ /l)........................ 31

Table 5: Decay Constants of Important Neutron Poisons Decay Chains................................. 48

Table 6: diffusionFoam Member Function and Equation Cross-References........................... 62

Table 7: Criticality Conditions for Some Simple Bare Reactors .. 68

Table 8: Summary of diffusionFoam Results for Steady-state Analytical Benchmarks.......... 68

Table 9: Dodds Benchmark Steady-State Parameters.. 69

Table 10: K-effective Comparison for the Dodds Benchmark .. 70

Table 11: K-effective Comparison for the OECD PBMR Benchmark.................................... 72

Table 12: Delayed Neutron Parameters for Reactivity Insertion Calculations 75

Table 13: Point Jump Approximation Applied to the Reactivity Insertion Cases 77

viii

ABBREVIATIONS

AMG agglomerated algebraic multigrid

BC boundary condition

BICCG incomplete Cholesky preconditioned biconjugate gradient

CCM computational continuum mechanics

CFD computational fluid dynamics

FE finite-element

FEA finite-element analysis

FEM finite-element method

FOAM Field Operation and Manipulation

FV finite-volume

FVM finite-volume method

HDF Hierarchical Data Format

HTGR high temperature gas-cooled reactor

HTR high temperature reactor

LAM Local Area Multicomputer

MP multi-physics

MPI message passing interface

NASA National Aeronautics and Space Administration

NCTAM National Committee on Theoretical and Applied Mechanics

OECD Organization for Economic Co-operation and Development

OOP object-oriented programming

OpenFOAM Opensource Field Operation and Manipulation

PARCS Purdue Advanced Reactor Core Simulator

PBMR Pebble Bed Modular Reactor

PDE partial differential equation

PJA prompt jump approximation

TINTE TIme dependent Neutronics and TEmperatures

TMI Three Mile Island

U.S. United States

U.S.NRC United States Nuclear Regulatory Commission

VVER Voda-Vodyanoi Energetichesky Reaktor

ix

NOMENCLATURE

Latin Characters

A - in-cell coefficient

A - outward facing area vector / coefficient matrix

B - neutron buckling

C - delayed neutron precursor concentration / between group cross-term

d - length

d - length vector

D - material diffusion constant

f - arbitrary function name

fE - Energy per fission

F - nuclear fission rate

G - total number of energy groups

I - generic parent isotope

k - effective reactor multiplication constant

K - total number of ordinates

L - neutron leakage / total number of delayed neutron precursor groups

N - generic isotope concentration

r - position vector

P - neutron production rate

Q - source term / power production

R - reaction rate

Re - time-dependent term in the neutron diffusion equation

s - control volume surface

S - source term

S - source term vector

t - time

U - fluid velocity vector

v - mean neutron velocity

V - volume

x

w - quadrature weight

X - generic daughter isotope

Greek Characters

α - albedo / relaxation factor

β - delayed neutron fraction per fission

χ - neutron spectrum

∆ - discrete time interval

φ - scalar neutron flux

Φ - neutron flux vector

ϕ - mass flux

γ - yield per fission

λ - decay constant / extrapolated length

Λ - neutron generation time

µ - integrating factor

ν - neutron yield per fission

ρ - fluid density or inserted reactivity

σ - microscopic neutron cross-section

Σ - macroscopic neutron cross-section

Ω - ordinate unit direction vector

ψ - directional neutron flux

ζ - higher order production term

Superscripts

1q - new time value (in the case of neutron flux and delayed neutron concentration)

0q - old time value (in the case of neutron flux and delayed neutron concentration)

ggq →' - from the g’th energy group to the gth energy group

kkq →' - from the k’th ordinate to the kth ordinate

*q - calculated value / after the prompt jump

xi

Subscripts

0q - old time value

1q - new time value

aq - absorption

albedoq - with reference to the albedo boundary condition

Bq - at the boundary

dq - delayed

extrapq - with reference to the extrapolated length boundary condition

fq - fission / at the face

gq - with reference to the gth energy group

iq - with reference to the ith isotope

jq - with reference to the jth control volume

kq - with reference to the kth angular ordinate

lq - with reference to the lth delayed neutron precursor group

sq - scattering

tq - total

φq - with reference to the scalar neutron flux

Embellishments

q ′′′ - per unit volume

qɺ - first time derivative

q - average value

q~ - local value

1

1. INTRODUCTION

Nuclear reactor analysis deals with the coupled solution of the many physical processes

taking place in a nuclear reactor. The solution of these individual physical processes has

traditionally been carried out using several loosely-coupled solvers, each having been

developed independently from the others. In particular, the calculation of the spatial

distribution of neutrons in space and time is traditionally separated completely from the heat

transfer calculation. This separation was introduced in the past for a number of reasons; the

solution of each class of problem is typically undertaken by specialists in each field, the

complexity of the problems differ, and there are numerical differences between the classes of

problems being modeled. This separation leads to problems when coupling the solvers. Often

differences in data management and spatial discretization require complex interface codes to

be developed for the mapping and passing of data. Often independent source code is written

to perform the same tasks in each solver and there is a significant amount of duplication. This

in turn makes the verification of the coupled codes a time consuming and often labour-

intensive task.

This particular problem is also encountered in the field of general multi-physics, which deals

with the coupled solution of multiple fields. In the past, the fields of reactor analysis and of

general multi-physics analysis, e.g. computational fluid dynamics or structural analysis, were

considered to be separate entities, and therefore each has developed independently from the

other over the years. The developments in each field have shown very different trends, driven

largely by external influences in industry. In particular, strict regulations in the nuclear

industry require that newly developed codes undergo a detailed verification and validation

process, often prolonging the development times considerably. Thus there has been a

reluctance to develop new codes. More often than not an older code will be updated, with the

disadvantage that the older programming methodologies and structures remain unchanged.

In contrast, general multi-physics analysis applied to other engineering fields has advanced

rapidly over recent years, embracing newer programming methodologies such as object-

2

oriented programming. This has in turn led to the development of several multi-physics

toolkits, allowing the solution many classes of engineering problems in a simultaneous

fashion, and readily extendable to new classes of problems. One such example is the Open-

source Field Operation and Manipulation (OpenFOAM) toolkit, a set of classes written in the

C++ programming language, which solves general partial differential equations using the

finite-volume approach. The finite-volume approach is the standard methodology used today

in computational fluid dynamics (CFD) calculations for the solution of fluid flow problems. It

may be considered an extension to the finite-difference approach, which conserves the

properties of a variable over a control volume.

1.1 Research Objectives

The objective of this research is to show that modern object-oriented multi-physics toolkits

can effectively be used for the solution of spatial reactor dynamics and other classes of reactor

analysis problems. In achieving this objective, the following questions will be considered and

answered.

1. Can the OpenFOAM toolkit be successfully used to solve the spatial- and time-

dependent multi-group neutron diffusion equation?

2. Does the OpenFOAM toolkit provide advantages in terms of the development and

maintenance of a reactor analysis code?

3. Can the OpenFOAM toolkit be extended to allow for more advanced transport

approximations such as discrete-ordinates and spherical-harmonics?

4. Can high-order spatial discretization schemes such as the nodal methods be

generalized such that they may be implemented using the OpenFOAM toolkit?

Questions 1 and 2 are the focus of this research and will be answered using a practical

approach. The remaining questions are essentially speculative, and answers will be given

based on experience gained over the duration of this research. A step-by-step approach is

followed which allows the above questions to be answered. Each step represents a logical

3

progression towards an understanding of the requirements of reactor analysis codes as well as

the capabilities and advantages provided by the OpenFOAM toolkit. An existing code, the

TIme-dependent Neutronics and TEmperatures (TINTE) code, provides the reference theory

for a basic spatial- and time-dependent solver. The implementation of a subset of the TINTE

functionality using OpenFOAM is the primary means by which experience will be gained for

the purposes of answering the above questions.

1.2 Outline of Dissertation

Chapter 2 provides a review of the available literature that pertains to this research. Included

in this chapter are a discussion and background on general reactor analysis and its

development over the years in section 2.1. A basic introduction to the TINTE code system is

also provided. The concept of multi-physics analysis is discussed in section 2.2, and we

explore the current-day field of CFD analysis as a form of multi-physics analysis. The

objective of the discussion in section 2.3 is to provide a general comparison between the

current solution methods employed in both multi-physics analysis and reactor analysis codes.

The concept of object-oriented programming and the advantages it provides for code

development are introduced in section 2.4, followed by an introduction to object-oriented

toolkits, which have been developed specifically for multi-physics analysis. In particular, one

example of such toolkits, the OpenFOAM toolkit, is discussed in section 2.5.

The OpenFOAM toolkit is studied in more detail in chapter 3. Here the structure and

functionality of the toolkit is examined from a reactor analysis perspective, addressing the

major features. Chapter 4 details the basic subset of theory of the TINTE code, rewritten in a

form that is more suited for direct implementation in OpenFOAM. The implementation of this

theory in OpenFOAM is then described in chapter 5. Along with this implementation

description useful and convenient features are noted, as well as certain missing features that

would have been of assistance had they been available. Chapter 6 contains a summary of

results, obtained using the newly implemented solver, for a compiled set of simple analytical

4

cases and numerical benchmark calculations. A discussion of findings and conclusions

follows this in chapter 7.

5

2. LITERATURE SURVEY

2.1 Nuclear Reactor Dynamics Methods

The principle equation of use in reactor analysis is the neutron transport equation (Stacey

2001), which is derived from the Boltzmann equation for the kinetic theory of gases. This

equation can be used to determine the distribution of neutrons and photons in space as a

function of time. The transport equation may be solved directly in only a very limited number

of cases. For this reason, approximations and simplifications to the transport equation are

applied to solve engineering problems.

The solution methods may be divided into two classes, namely stochastic (Monte Carlo) and

deterministic methods. The deterministic methods may be further classified into integral and

integro-differential transport methods. The integro-differential transport methods include the

discrete-ordinates and spherical-harmonics methods.

The discrete-ordinates methods (S-N methods) are based on the concept of evaluating the

transport equation in a number of discrete angular directions. Quadrature relationships are

used to replace the scattering and fission source angular integrals with sums over the angular

directions (ordinates) (Stacey 2001). The result is a coupled set of equations for each ordinate

and energy group, which are solved simultaneously to obtain the directional group fluxes.

The spherical harmonics methods (P-L methods) are based on the concept of representing the

angular flux and differential scattering cross-section by means of Legendre polynomials

(Stacey 2001). The result is a coupled set of equations for the N-Legendre flux moments and

each energy group, which are solved simultaneously to obtain group fluxes.

A well known simplification to the transport equation is the diffusion approximation.

Diffusion methods make use of Fick’s law of diffusion to approximate the neutron current at a

point in the reactor using a diffusion coefficient.

6

The diffusion equation is mathematically equivalent to the first order discrete-ordinates (S-1)

and spherical harmonics (P-1) approximations. The diffusion approximation, in its derivation,

assumes that neutron scattering is isotropic, neutron absorption is less likely than scattering,

and that there is a linear spatial variation in the neutron distribution. These assumptions are

valid for moderating materials, but not for fuels, strong absorbers and other regions of strong

flux gradient, or cavities. Somewhat better approximations may, however, be obtained for the

situations above by means of adjusted nuclear parameters. As an example, effective

homogenized cross-sections (Stacey 2001) may be used to approximate the flux in regions

containing strong absorber materials and to model the influences of control rods. Similarly,

direction-dependent diffusion coefficients may be used to model the neutron streaming effects

in cavities.

Despite the assumptions made and the inaccuracies associated with the diffusion

approximation, the multi-group diffusion equation is still in common use today for spatial-

and time-dependent reactor analysis because of its relative simplicity and speed. As an

example, the United States Nuclear Regulatory Commission (U.S.NRC) currently uses the

Purdue Advanced Reactor Core Simulator (PARCS) code (Joo et. al. 1998), a diffusion

equation based solver, to predict the time-dependent behaviour of reactors during operation

and during postulated accident conditions.

2.1.1 A Brief Background on Computational Reactor Analysis

Smith gives a very thorough overview of the development of reactor core analysis methods

over the past decades (Smith 2003). Early reactor designs made use of the so-called four- and

six-factor formulae. For this, extensive use of data fits, geometrical approximations and

analytical solutions was required. In the 1950s, methods were driven largely by the needs of

the naval light-water reactors. A large emphasis was placed on creating simple mathematical

models for the many analytical concepts necessary for reactor analysis. These simplified

analytical models relied heavily on an understanding of the underlying physics of the

problem.

7

With the advent of the electronic computer in the 1960s and 1970s, reactor design began to

make extensive use of computational methods. Early reactor dynamics codes solved the one-

dimensional few-group diffusion equations, taking into account the effects of delayed

neutrons and the fission products 135I and 135Xe. This was later extended to two-dimensional

finite-difference codes.

During the 1980s more advanced methods such as the finite-element method (FEM), amongst

others, began to gain popularity. A number of codes were written making use of these

‘more exotic’ spatial discretization methods. An example of this is the TINTE code, discussed

in more detail in upcoming sections, which makes use of the leakage iteration method, an

extension of the finite-difference method. It was during these years that the personal computer

industry boomed. It was also during this time, however, that accidents such as Three-Mile

Island (TMI) and Chernobyl took place. This caused the nuclear industry to lose much

momentum, and also reactor analysis code development. More stringent safety requirements

resulted in increased code development times and the nuclear industry was reluctant to

develop new codes. Over the last decade (mid 1990s onwards) the nuclear industry has since

regained some momentum and, with this, a number of more modern codes have been

developed.

There is currently an emphasis on replacing the older simplified methods of solution with a

first principles approach to solving the neutron transport equation (Ragusa 2006). At present,

a number of three-dimensional implementations of the discrete ordinates methods are

available. One good example of a modern deterministic neutron transport solver is the

research code ATTILA (Lucas et. al. 2004). ATTILA solves a first-order form of the steady-

state transport equation on a three-dimensional unstructured spatial mesh, using tetrahedral

mesh elements. ATTILA is coded in FORTRAN 90.

Ivanov (Ivanov 2007) states that current trends in nuclear power generation and in the design

of next-generation plants are resulting in a greater emphasis being placed on improving

analyses through improved coupled methodologies. The concept of multi-physics multi-scale

8

reactor analysis code systems has recently been introduced, aiming towards flexible and

efficient coupling of reactor analysis models.

2.1.2 The TINTE Code System

The TIme-dependent Neutronics and TEmperatures (TINTE) code system (Gerwin 1987)

(Gerwin et. al. 1989) is a two-group diffusion code for the calculation of the time-dependent

nuclear and thermal behavior of high temperature gas-cooled reactors (HTGRs), in two-

dimensional axisymmetric geometry. The code was originally written for the prediction of the

behavior of pebble-bed reactors for short-term dynamics (power excursions, etc.) but this was

later extended to medium term dynamics (xenon oscillations, etc.). The code was specifically

written with speed in mind. A number of approximations and simplifications have been

introduced to the code that have allowed full spatial and time-dependent reactor analysis at

real-time or faster speeds using modern personal computers.

Written in FORTRAN 77, the neutronic module has recently been reverse engineered at

PBMR (Clifford 2007), therefore the underlying equations and solution algorithms are well

understood. TINTE solves the two-group neutron diffusion equations, taking into account the

effects of delayed neutrons, fission-product poisoning and temperature changes. The reactor is

modeled using a structured, rectangular, two-dimensional axisymmetric mesh.

2.2 Multi-physics Analysis

Multi-physics deals with coupled-field analysis, allowing analysts to determine the combined

effects of multiple fields (physical phenomena) on a design (Lethbridge 2004/2005). In the

past, the effects of these various phenomena were treated separately, utilizing a single analysis

for each phenomena. As an example, the deflection of an aircraft wing was determined in the

past by first analyzing the fluid flow over an undeflected wing. The resulting forces were then

used as inputs to a wing deflection calculation. The modern multi-physics approach would be

to couple a finite-volume (FV) computational fluid dynamics (CFD) and a finite-element (FE)

material stress calculation together as a single calculation. The wing deflection is used to

9

update the mesh for the CFD calculation and the CFD calculation yields surface pressures and

shear forces for the material stress calculation.

Many traditional nuclear reactor analysis codes may in fact be regarded as multi-physics

codes. However, of interest to us are recent developments that have taken place in this field.

Over recent years, generic CFD and finite-element analysis (FEA) codes have evolved into

very competent multi-physics platforms. Typical examples of these codes are CFD-

FASTRAN (CFD-FASTRAN 2007), ANSYS Multi-physics (Ansys MP 2007) and CFD-

ACE+ (CFD-ACE+ 2007), combining fluid mechanics, solid stress and deflection analysis,

heat transfer and chemical reaction kinetics as coupled modules within the overall package.

To a large extent, these packages consist of a collection of coupled modules. The coupling

between various fields may be either direct (implicit) or iterative (explicit) (Waterman 2004),

depending on the complexity of the equations being solved. Implicit coupling requires a

single matrix solution for all fields, while explicit coupling sequentially solves the individual

problems, passing explicit values across the field interfaces and iterating until all solutions

converge. This explicit coupling is achieved by means of tailored third party interfaces. The

modules themselves are built on existing and well established CFD codes, solid mechanics

codes, etc., the former of which are briefly discussed below. For reasons given below, modern

CFD codes can be regarded as multi-physics codes and, because of this, the historical

development and current status of this class of codes are discussed in the upcoming sections.

2.2.1 Computational Fluid Dynamics

The field of computational fluid dynamics (CFD) deals with the solution of the set of partial-

differential-equations governing fluid flow, using a combination of mathematical modeling

and numerical methods. The basis of CFD is the three conservation laws of mass, momentum

and energy, using a continuum approach (Fletcher 1990). It should be noted that CFD, as it is

applied today, deals with many closely coupled physical phenomena such as fluid flow,

multiple fluid phase interactions, heat transfer, chemical reaction kinetics and particle

transport. A modern CFD code may therefore be regarded as a multi-physics code.

10

2.2.2 A Brief Background on Computational Fluid Dynamics

The U.S. National Committee on Theoretical and Applied Mechanics gives a basic historical

overview of CFD code development up to the 1990s (U.S. NCTAM et. al. 1991). The first

methods for solving fluid flow using computational methods were based on conformal

transformations of the flow around a cylinder to flow around airfoil cross-sections. The

extension of these methods to three-dimensions was limited, at the time, by the available

computing power. In 1966 the so-called panel method, allowing the three-dimensional

solution of the potential flow equations, was first presented. This method represents the

surfaces of the model geometry as several panels. These methods were largely developed by

the aircraft industries of the time: NASA, Boeing, Lockheed, etc.

Panel codes were followed by full potential codes in the mid to late 1970s. The potential

equations have limited applicability and with the appearance of more advanced computers in

the 1970s, the solution of the Euler equations of fluid flow was considered. The upwind

finite-difference, finite-volume and finite-element methods were developed during that

decade. A number of commercial codes were developed in response, featuring multi-grid and

other fast direct or iterative solvers. Initially, only structured grids were considered, but over

time this was extended to unstructured grids.

In the 1980s the CFD service industry was created and this expanded very quickly into the

1990s. The growth and development of CFD codes and methodologies over these decades

followed that of computers. This growth was largely driven by target industries, the greatest

developments being seen in the aerodynamics, numerical weather prediction, acoustics and

fluid-structure interaction, propulsion systems, and nuclear reactor design fields. This diverse

set of target industries has meant that CFD has been a topic of great interest for the past two

decades. Fletcher states that ‘perhaps the most important reason for the growth of CFD is that

for much mainstream flow simulation, CFD is significantly cheaper than wind-tunnel testing

and will become even more so in the future’ (Fletcher 1990). A more recent description on the

11

current status of CFD, and computational mechanics in general, is given by Oden et al. (Oden

et. al. 2002).

When modern CFD codes are compared with the codes of the 1980s, there are vast

differences in functionality, capabilities, as well as ease-of-use. When compared with the

current generation of reactor analysis codes, there are also significant differences as a result of

historical influences. Some of these differences are discussed in the next section.

2.3 Comparison Between Modern Computational Fluid Dynamics and

Reactor Analysis Codes

If we consider the status of development of reactor analysis versus CFD codes up to the late

1970s, common trends are shared by both. By the early 1980s common features of codes

included the use of finite-difference discretization on structured meshes, a linear

programming style in FORTRAN 77. Additionally, the coupling of phenomena was generally

achieved by externally coupling existing solvers. If one considers the changes made in each

field since then, an obvious contrast emerges.

Modern reactor analysis codes employ methods such as the nodal and finite-element methods.

Only in a few cases are non-orthogonal unstructured meshes used. A code will generally

consist of several loosely coupled modules. It is interesting to note that despite the availability

of more advanced programming languages such as FORTRAN 90/95 and C++, which support

structured and object-oriented programming features, many modern reactor analysis codes are

still written in a linear fashion using FORTRAN 77. One contributing factor is that the

licensing of new reactor analysis codes is a very time-consuming and drawn out process.

Developers are therefore reluctant to create new codes from scratch.

While the underlying theory has not changed significantly, the methodologies used in CFD

analysis have changed substantially over the last few decades. Current commercial CFD

codes almost exclusively use the finite-volume method. Typical examples of such codes are

Star-CD (Star-CD 2007), Fluent (Fluent 2007) and CFX (Ansys CFX 2007). These codes

12

provide robust multi-grid solvers for the three-dimensional heat and mass transport equations,

using fully unstructured meshes. Non-orthogonality of mesh cells is compensated for. The

solvers are often extensible to allow for the solution of different classes of problems such as

chemical reaction kinetics. Easy-to-use graphical user interfaces are provided for pre-

processing, post-processing and the management of calculations. Modern CFD codes are

almost exclusively written in an object-oriented language such as FORTRAN 90 or C++.

Despite obvious differences in the physics being modelled, it is clear that the field of reactor

analysis would potentially benefit by taking careful advantage of the advancements which

have been made in CFD and other general multi-physics fields over the years.

2.4 Object-Oriented Programming

Rumbaugh et al. defines object-oriented programming (OOP) as programming in terms of a

collection of discrete objects that incorporate both data and behavior (Rumbaugh et. al. 1991).

Historically, a program was viewed as a logical procedure that takes input data, processes it,

and produces output data. In this context, the programming challenge was seen as how to

write the logic, not how to define the data. Object-oriented programming takes the view that

what we really care about are the objects we want to manipulate rather than the logic required

to manipulate them. This is not to say that the logic no longer has importance but rather that,

in the object-oriented context, each object is responsible for its own logic.

Object-oriented programming was initially conceived in the 1960s in response to the

increasing complexity of hardware and software systems at the time (Meyer 1988). An object-

oriented approach to programming was conceptualized to improve the quality of large

complex hardware and software systems.

FORTRAN 77 is the classical scientific programming language on which most reactor

analysis code systems have been developed in the past. This programming standard has been

rendered obsolete by the more advanced FORTRAN 90 (Brainerd et. al. 1996) and

FORTRAN 95 standards, both of which include enhancements and extensions over

13

FORTRAN 77 for high-level scientific programming. These enhancements include the

support for a number of object-oriented concepts. The primary reason for the popularity of the

FORTRAN derivatives in scientific programming is the ease with which multidimensional

arrays and matrices can be manipulated. The FORTRAN derivatives, however, do not have

full support for all object-oriented features.

While scientists would argue that a language such as C++ is not suitable for scientific code

development and dedicated programmers would argue that FORTRAN 90/95 is too

restrictive, it is clear that an object-oriented approach, which is supported by any number of

modern programming languages, provides significant advantages for both code development

and maintenance.

2.5 Multi-physics Toolkits

Numerous multi-physics toolkits (scientific computation frameworks) currently exist,

providing general users and scientists flexible platforms on which sets of equations may be

formulated and solved. Often these frameworks rely quite heavily on object-oriented

structures and techniques to provide flexibility (Kruger 2004). The C++ language is often

used as the basis for these frameworks for this reason. In the domain of FORTRAN-based

programming languages, the concept of modular toolkits is found. One such environment

(Filippone et. al. 1999) provides for the distributed solutions to general problems. With such

modular toolkits, however, the user is often restricted to a fixed set of features.

The Open-source Field Operation and Manipulation (OpenFOAM) C++ class library (Weller

et. al. 1998) provides a framework on which reliable and efficient computational continuum

mechanics (CCM) codes may be developed. Prior to being released into the public domain the

framework was known simply as FOAM and therefore, in this text, the terms FOAM and

OpenFOAM are used interchangeably. The framework has been developed such that the top-

level syntax of the code resembles closely the conventional mathematical notation used to

represent tensors and partial-differential equations (PDEs). As an example (Weller et. al.

14

1998), the fluid mechanics mass conservation equation may be written in the mathematical

form as shown below.

() 0=•∇+
∂
∂

φ
t

ρ

where Uφ ρ= , U is the fluid velocity vector, ρ the fluid density and t the time.

The solution to this equation is programmed in FOAM as shown below.

fvMatrix<scalar> rhoEqn
(
 fvm::ddt(rho)
 + fvc::div(phi)
);
rhoEqn.solve();

In the above code, the variables rho and phi are FOAM objects, based on the object-oriented

concepts introduced in section 2.4. Each contains full spatial- and time-dependent definitions

for the variables they represent. This high-level representation of equations allows for easy

error-checking and rapid implementation of solvers. Additional detail on the internal FOAM

representation of these objects is provided in chapter 3.

The framework was initially developed for the solution of CFD problems using the finite-

volume method, but has been successfully used for the solution of other classes of problems

such as solid material stress modeling and magneto-hydrodynamics. More recently, the

framework has been applied to the typical multi-physics problems of fluid-solid interaction

(Jasak 2006). The object-orientated structure of the framework is such that extensions

(discretization schemes, boundary conditions, etc.) for new classes of problems may be

introduced without any modification to the existing code. The framework is flexible enough

that new functionality may be implemented at both the high level (tensors, PDEs) as well as at

the low level (matrix solvers, acceleration methods, etc.), thus making it suitable for both

research and production versions of a solver.

The FOAM framework provides many of the features normally found in today’s commercial

CFD packages, namely steady-state and time-dependent finite-volume solutions on arbitrary

15

unstructured meshes, with non-orthogonality correction, as well as multiple time and spatial

discretization schemes. Further detail on the structure and functionality of the FOAM

framework as it pertains to this research is given in chapter 3.

2.6 Closure

In this chapter introductions were given to the concepts of reactor analysis and multi-physics

analysis. As part of this, the TINTE code was introduced as an example of a time-dependent

multi-group diffusion solver. Further, a comparison was made between the development and

current status of reactor analysis and general multi-physics codes. From this comparison it

was shown that the field of reactor analysis could potentially benefit from current multi-

physics methods. The concept of an object-oriented approach to software development was

introduced. This then led on to an introduction to object-oriented multi-physics toolkits, in

particular the OpenFOAM toolkit. This toolkit is discussed further in the chapter 3.

16

3. THE FOAM FRAMEWORK

The Field Operation and Manipulation (FOAM) framework, which was briefly described in

section 2.5, will now be discussed in more detail. An emphasis is placed on the framework’s

functionality as it pertains to this research. In particular, an attempt has been made to provide

examples relevant to neutronic calculations. For a more comprehensive description refer to

the FOAM Programmer’s Guide (OpenFOAM PG 2005).

3.1 Tensors and Fields

In FOAM mathematical equations are represented using tensors of varying rank. The most

commonly found in nuclear and CFD calculations are tensors of rank 0 and 1, namely scalars

and vectors. In FOAM a ranked tensor can be allocated dimensions; in this way, dimension

checking is carried out for all operations.

The field class is the basic container class for scalars, vectors and higher rank tensors. Spatial

discretization is handled in FOAM using the finite-volume method. A three-dimensional

unstructured finite-volume mesh (fvMesh) is defined, consisting of any number of discrete

cells. This mesh object, when associated with a field of tensors, is sufficient to describe the

spatial distribution of the tensor over a given domain. Consider the scalar ()t,rφ , which has

both spatial- and time-dependence. This variable, when associated with a mesh, will have

discrete scalar values ()tiφ within each cell. Similarly if the time-domain is discretized into

the current time 1t , old time 0t , and any number of older time points, the fully discretized

representation for the scalar can be written 1
iφ , 0

iφ , 1−
iφ , etc. FOAM therefore defines fields

of tensors at each point in time. In FOAM terminology, the combination of a dimensioned

tensor field at a discrete time point with a given mesh structure at the same time point is

called a geometric field. Each geometric field is associated with its predecessors, i.e. the

geometric field at previous time points. In FOAM a geometric field of scalars is termed a

volScalarField , and a geometric field of vectors, a volVectorField .

17

FOAM includes the functionality to perform any number of operations on fields and

geometric fields, including negation, addition, inversion, multiplication, trigonometric

functions, cross-products, etc. depending on the rank of the tensor. This allows algebraic

manipulation of the ranked tensor fields. The FOAM Programmer’s Guide (OpenFOAM PG

2005) contains a more complete list of supported operations and functions. This functionality

has been achieved in FOAM using C++ overloaded operators and functions. As an example,

consider the typical example of the buildup of a fission product over time in a constant flux.

()101 −
′′′

+= ∆−∆− λλ

λ
γ

e
F

eNN

where

1N and 0N are the isotope concentrations at the end and start of the time interval

γ and λ are the isotope fission yield and decay constant respectively

F ′′′ is the fission reaction rate

∆ is the time interval

In FOAM, the coding for this would resemble that given below.

N = N.oldTime()*EXP(-lambda*deltaT)
 + F*gamma/lambda*(EXP(-lambda*deltaT)-1);

Here the concentration N, at time 1, and N.oldTime() , at time 0, and the constant fission rate

F are geometric fields of dimensioned scalars (volScalarField). In this way the clumsiness

traditionally associated with array operations in C++ has been removed and replaced by a

functionality similar to that of FORTRAN 90, where operations are carried out for entire

blocks of data.

3.2 Spatial Discretization

The solution domain is discretized to form a computational mesh, consisting of many discrete

control volumes or cells. Each variable is principally defined at the cell volumetric centres.

FOAM makes use of an arbitrarily unstructured mesh, thus any number of cells of any shape

are allowed. The only limitation on this is that control volumes may not overlap and they

18

must completely fill the solution domain. A typical mesh structure and computational cell is

depicted in Figure 1.

x

y

z

P

N1

N2

N3

N4

f1
f2

f3

Boundary

v1

v2

v3

v4

v5

f4

f5

Figure 1: A Typical FOAM Mesh and Computational Cell

Each computational cell is defined by several faces forming the cell boundary. The faces may

be shared between cells, or alternatively lie on the edge of the domain, forming a boundary.

Each face, in turn, consists of a number of vertices. A face may be shared by two cells, in the

case of an internal face, and a vertex may be shared by any number of faces. Each face is

therefore constructed from any number of vertices on a flat plane. The full geometric

definition of a mesh consists of a list of vertices, a list of faces based on vertex IDs, and a list

of cells based on face IDs. For these, FOAM defines the pointList , faceList and cellList

classes.

Additionally, the boundaries of the model must be defined. For this FOAM provides the

polyPatch class, where each polyPatch object represents a cell face on the solution domain

boundary. It is typical in CFD applications to define boundaries on a global scale, e.g. for the

simulation of flow in a tube, one would define the tube walls, the tube inlet and the tube outlet

as global boundaries. Typically, on the discretized mesh, each of these global boundaries

consists of several boundary cell faces. This collection of polyPatch objects is contained in a

polyPatchList object representing one global boundary. All global boundaries on a mesh

are grouped together into a single polyBoundaryMesh object. The complete finite-volume

19

mesh definition, including the list of points, faces and cells, as well as the boundary

definitions is contained in a fvMesh object.

3.3 The Finite-Volume Method and Discretization

Consider a simplified representation of the diffusion equation involving the scalar neutron

flux φ .

() φφφ SD =Σ+∇•∇−

For the purposes of this explanation, D , Σ and φS are considered arbitrary constants. The

finite-volume methodology may be applied to this conservation equation by integrating the

equation over a discrete control volume V , in this case the computational cell. This control

volume integration is the key step which distinguishes the finite-volume method from other

numerical methods (Versteeg and Malalasekera 1995).

() ∫∫∫ =Σ+∇•∇−
VVV

dVSdVdVD φφφ

For the diffusion term, one may apply Gauss’ theorem to transform the volume integral to a

surface integral. For other terms the properties are assumed constant over the control volume.

() VSVdD
s φφφ =Σ+•∇− ∫ A

Here A is the control volume surface area vector and s the surface of the control volume.

The control volume is assumed to be bounded by any number of flat faces. The surface

integral can be written as a sum over each of the faces.

() VSVdD
f

f φφφ =Σ+•∇−∑∫ A

Here the subscript f denotes the cell face. The midpoint approximation can be applied at

each face, yielding the following.

() VSVD
f

ff φφφ =Σ+•∇−∑ A

where fA is the outward pointing face area vector. Thus we note that applying the finite-

volume method to a PDE results in an equation involving a sum over the cell faces. It is at this

point that assumptions need to be made regarding properties at the faces. In the case above,

20

the neutron current φ∇D at the face would need to be determined. It is at this point that a

spatial differencing scheme is chosen for () fD φ∇ . Such differencing schemes generally

relate the value at the boundary to the cell centre value and neighbouring cell values. These

schemes are discussed further in section 3.4.

For the case of time-dependent equations, the finite-volume approach requires a spatial as

well as a time integration. Consider now a simplified form of the time-dependent diffusion

equation.

() φφφφ
SD

tv
=Σ+∇•∇−

∂
∂1

Again, for the purposes of this explanation, v , D , Σ and φS are considered to be arbitrary

constants. Using the approach shown previously, this may be written as shown.

() VSVDV
tv f

ff φφφφ =Σ+•∇−
∂
∂

∑ A
1

or more simply

()()ttf
t

φφ
,=

∂
∂

In the absence of analytical solutions to the terms contained within ()()ttf φ, , these values are

calculated at discrete points in time (Ferziger and Peric 2001). If an explicit Euler (forward-

differencing) scheme is used, these values are evaluated at times for which the solution is

already known. A fully implicit scheme (backwards-differencing) evaluates these values at

times for which the solution is not already known. The Crank-Nicholson scheme is a

combination of forwards and backwards differencing and assumes that these values are

evaluated at some time in-between. The choice of differencing scheme affects the speed,

stability and accuracy of the problem. Fully explicit schemes tend to be less stable while

requiring little computational effort. Small time-intervals are necessary to achieve suitable

stability and accuracy. Fully implicit schemes are unconditionally stable but require more

computational effort. In general, the resulting discretized equation will have the form

21

() ()0
0

1
1

01

01

φφφφ
ff

tt
+=

−
−

where the superscripts/subscripts 0 and 1 denote the values at two consecutive time points.

After the PDE is fully discretized, a matrix equation is constructed. For an arbitrary PDE, this

matrix equation generally takes on the form

SA =Φ

Here A is a coefficient matrix, S is a source term vector and Φ the vector of ranked tensors

being solved for. An important feature of FOAM is the automatic construction of the

coefficient matrix A and source term vector S for an arbitrary PDE. This is handled in

FOAM using the classes of static functions contained in finiteVolumeMethod , abbreviated

as fvm . Each fvm function or operation returns a fvMatrix object, which contains the

coefficient matrix and source vector contributions, as well as a reference to the geometric

field being solved for. The discretization method used to construct the coefficient matrix and

source vector is dependent on user input. This is discussed further in section 3.4. Consider the

simplified form of the time-dependent diffusion equation given below.

() φφφφ
SD

dt

d

v
=Σ+∇•∇−1

Grouping the implicit terms (terms involving φ) on the left of the equation, and explicit terms

(independent of φ) on the right of the equation, the above equation may be defined in FOAM

as follows.

fvMatrix diffusionEqn
(
 1/v*fvm::ddt(phi) - fvm::laplacian(D, phi) + si gma*phi == S
);

Note that there is a distinction between the explicit and implicit forms of expressions. In the

FOAM context, explicit refers to expressions that are calculated using already known variable

values at the time they are requested. In general numerics, these are often referred to as source

terms. Explicit terms contribute towards the source vector S. In the FOAM context, implicit

terms refers to expressions involving unknowns, and for which a solution is required. These

22

terms contribute towards the coefficient matrix A . Implicit terms may be made explicit, if

necessary, and placed in the source term. This would primarily be done to stabilize the matrix

inversion process, yielding the same solution but requiring iteration for convergence.

The fvm namespace functions aim, wherever possible, to return a coefficient matrix with no

explicit terms, i.e. they aim to be fully implicit. In most cases, however, explicit sources are

unavoidable, resulting from non-linearity within problems. The use of higher order spatial

differencing schemes, mesh non-orthogonality correction, solution under-relaxation and time

differencing, amongst others, will all contribute towards the source vector.

As an example, the fvm::ddt operator, for the case of Euler time integration over a time

interval ∆ , would evaluate to
∆
− 01 φφ

. The coefficient matrix would in this case evaluate to

∆
1

 on the main diagonal with a contribution of
∆

0φ
 added to the explicit source term.

Consider also the case of the Laplacian (diffusion) term ()φ∇•∇ D which was linearised

previously.

()∑ •∇
f

ffD Aφ

The face current () ffD A•∇φ may be approximated by the cell-centre-to-cell-centre

gradient f

NP

f
fD A

d
d

d
•

−φφ
, where d is the cell-centre-to-cell-centre vector. Thus, in the

case where d is parallel to fA (orthogonal mesh), the terms
d

AD ff and
d

AD ff− are added

to the coefficient matrices for cells P and Nf respectively. If d is not parallel to fA (non-

orthogonal mesh), an explicit source term contribution is necessary to compensate for the

non-orthogonality (Peric 1985) (Jasak 1996) (Ferziger and Peric 2001).

A fully explicit equivalent to fvm is provided by the finiteVolumeCalculus class of static

functions, abbreviated as fvc . All of the functionality of fvm is replicated in fvc . In this case

23

the expression is evaluated as-is using the current values in each variable. The fvm functions

and operators provide the basis for the functionality shown in the example given in

section 3.1. A typical neutronic example would be the calculation of cell neutron leakages

using the diffusion approximation.

Leakage = fvc::laplacian(D, phi);

The Laplacian operator is just one of the many operators provided by the framework. The

FOAM Programmer’s Guide (OpenFOAM PG 2005) provides a list of the available fvm and

fvc operators and functions.

3.4 Numerical Differencing Schemes

Finite-volume integration produces equations that require us to make approximations for the

value and/or gradient of a ranked tensor at the cell faces. For this, one of numerous available

spatial differencing schemes may be chosen. FOAM allows the user to choose from many

differencing schemes for each PDE operator. Similarly, the user has a choice of a variety of

time-differencing schemes, including Euler, backwards differencing and Crank Nicholson. As

was the case for matrix solvers and boundary conditions, custom numerical schemes may be

defined. Table 1 summarizes the classes from which custom differencing schemes may be

derived.

Table 1: FOAM Base Classes for Numerical Differencing Schemes

Operator FOAM Base Class

Convection convectionScheme

Divergence divScheme

Laplacian laplacianScheme

Gradient gradScheme

Surface normal gradient snGradScheme

d/dt ddtScheme

d2/dt2 d2dtScheme

24

In the case of the spatial differencing, a surface interpolation scheme is necessary to

determine the value at the face. FOAM provides several commonly used surface interpolation

shemes, including linear, harmonic, upwind and quadratic upwind differencing, amongst

others. These schemes are derived from the surfaceInterpolationScheme class. A custom

surface interpolation scheme may thus be derived from this base class.

3.5 Boundary Conditions

Boundary conditions (BCs) for PDEs are divided into three groups:

� Dirichlet BC - prescribes a fixed value at the boundary

� Neumann BC - prescribes a fixed gradient at the boundary

� A combination of Dirichlet and Neumann boundary conditions

The FOAM framework makes provision for all of the above. A list of available boundary

conditions is provided in the FOAM Programmer’s Guide (OpenFOAM PG 2005). FOAM

does not, however, provide the typical albedo and extrapolated length boundary conditions

used in neutronic calculations. This issue is addressed in section 4.1.4.

A description of domain boundaries and their discretized representation has already been

given in section 3.2. Some description is, however, necessary with regards to the treatment of

boundaries by the operators and the functions of finiteVolumeMethod and

finiteVolumeCalculus . When performing the discretization of equation terms, it is

necessary to consider the contribution of the boundary faces to the overall face sum in the

finite-volume discretized equation. Consider the discretization for the Laplacian operator

given in section 3.3. For this operator, it is necessary to define the gradient ()bφ∇ at the

boundary face. For other operators it may be necessary to define the value bφ at the boundary

face. Thus any boundary condition needs be able to specify both the face value and face

gradient as a function of the cell value. For this, FOAM provides the fvPatchField class,

which in turn provides the necessary functions to calculate boundary values and gradients for

a given polyPatchList . Custom boundary conditions may be defined by deriving a new class

25

from the fvPatchField class. Typical examples of this in FOAM are

uniformFixedValueFvPatchField and zeroGradientFvPatchField .

3.6 Solvers

The solution of the matrix equation SA =Φ requires the computationally expensive inversion

of the coefficient matrix A . In general A is a sparse matrix, containing a large proportion of

empty (zero) elements, and therefore the matrix inversion may be accelerated using any

number of methods, including matrix preconditioning. FOAM provides the

lduMatrix::solver class as the basis for inverting matrices, from which specific solvers are

derived. Several matrix solvers are included in FOAM, for both symmetric and asymmetric

matrices, including a Gauss Seidel, an agglomerated algebraic multigrid (AMG) solver tuned

to elliptic problems, an incomplete Cholesky preconditioned biconjugate gradient (BICCG)

solver, and several other sparse matrix solvers. For a more complete list of available matrix

solvers, see the FOAM User’s Guide (OpenFOAM UG 2005). Custom solvers may be

defined by deriving a new class from lduMatrix::solver .

3.7 Parallel Processing Support

FOAM supports the domain decomposition method for parallel computing of large problems.

In essence, this method separates the spatial domain into several smaller meshes. The solution

is obtained for each mesh, while passing data at the separated faces between processors. Data

is transferred using the Local Area Multicomputer (LAM) implementation of the standard

message passing interface (MPI) (Burns et. al. 1994). The procedure of running a case in

parallel requires three steps; decomposition of the mesh, parallel execution of the decomposed

case, and reconstructing the solution mesh and data for postprocessing. An important feature

of FOAM is that, by design, all newly developed applications automatically support parallel

processing using the domain decomposition method.

26

3.8 User Input

Neutronic calculations are renowned for having large and complex input and output datasets.

It is therefore important that input and output be handled in an organized and structured

manner. This functionality is provided by the FOAM library classes. The inner workings of

the FOAM library classes will not be discussed but, as an introduction to the structured layout

of input and output data, a brief description of FOAM cases is provided here. For a more

detailed case description, the FOAM User Guide (OpenFOAM UG 2005) may be consulted.

A typical FOAM case is given a name and stored in a directory of the same name. Within this,

a number of subdirectories are required, specifically the system , constant and time

directories. A graphical layout of this structure is given later in 5.2. The system directory

contains information regarding the control and type of calculation to be performed. The

constant directory contains the mesh and fixed physical properties for the system being

solved. In a typical nuclear calculation this would include nuclear data such as decay

constants, fission yields, etc.

Individual time directories are created at user-specified time intervals, containing individual

files of data for particular fields and properties. These files are either supplied by the user or

are written by FOAM during program execution.

The input and output format of FOAM is designed specifically to be flexible. Data is

contained in individual files, and is organized into a number of dictionaries. These

dictionaries have a free format similar to that of C++ code. Essentially each dictionary defines

a hierarchical data structure, allowing any number of input or output objects to be specified

using keywords. This approach may be compared to that of other data storage libraries such as

the Hierarchical Data Format library (HDF5 2007), which uses a multi-object file format and

allows a variety of different object types to be stored in a single file.

27

3.9 Closure

In this chapter, the OpenFOAM framework was discussed to a certain level of detail. Included

in this discussion was an introduction to the finite-volume method as a general equation

discretization method. An emphasis was placed on the framework’s functionality as it pertains

to this research. In particular, an attempt was made to provide examples relevant to neutronic

calculations. In the upcoming chapter 4 a subset of the theory of the TINTE code is rederived

and suitable solution algorithms are proposed for a time-dependent neutron diffusion code.

This is done in such a way as to take advantage of the features of OpenFOAM discussed in

this chapter.

28

4. THEORETICAL DESCRIPTION

This chapter includes rederivations of a subset of the theory of the TINTE code (Gerwin

1987). In particular, the theory has been rewritten in a form more suited for implementation in

OpenFOAM. The derivation of a higher order discretization for the group diffusion equation,

including delayed neutron treatment, is given in section 4.1. Section 4.2 outlines the

modelling of saturation fission products such as 135Xe. Section 4.3 describes the very simple

heat production model assumed. Section 4.4 describes the algorithms and solution methods to

be used for the numerical solution of the equations of 4.1 through 4.4.

4.1 The Few-Group Diffusion Equations

The time-dependent group-diffusion equation for the gth energy group is given below (Stacey

2001).

() ()

Gg
QC

PD
tv

g
l

lllgd

gp
gg

g
gg

sgsgaggg
g

g

,,1
,

1
1

6

1
,,

,
'

'
'

…=
++

′′′−+Σ+Σ+Σ−∇∇=
∂

∂

∑

∑

=

≠

→

λχ

βχφφφ
φ

(4.1)

where

gφ is the gth group flux

gv and gD are the gth group mean neutron velocity and diffusion constant

respectively

agΣ and sgΣ are the gth group macroscopic absorption and scattering-out cross-

sections respectively
gg

s
→Σ ' is the macroscopic scattering cross-section from group g’ into group g

gp,χ and lgd ,,χ are the prompt and delayed neutron spectra for the gth energy group

and lth delayed neutron precursor group

β is the delayed neutron fraction per fission

lλ and lC are the lth delayed neutron precursor group decay constant and precursor

concentrations respectively

gQ is a fixed external source

29

The neutron production density term P ′′′ is defined as

∑Σ=′′′=′′′
'

''

11

g
gfgk

F
k

P φνν (4.2)

where

k is the effective reactor multiplication constant (k-effective), introduced to ensure

criticality of the steady-state solution

ν is the total neutron yield per fission

F ′′′ is the fission rate density

'fgΣ is the g’th group macroscopic fission cross-section

4.1.1 Delayed Neutron Treatment

A small fraction of neutrons produced during fission are emitted with some delay after fission

has taken place. These neutrons are known as delayed neutrons and they are formed primarily

through the decay of fission products. Approximately 40 of the 500 total fission product

nuclides emit delayed neutrons (Ott and Neuhold 1985). The accurate modeling of all these

delayed neutron emitting nuclides is a complex task and, for this reason, a commonly used

approximation assumes that the time-dependent integral behaviour of the delayed neutrons is

well represented by six delayed neutron precursor groups, as is shown in Equation (4.1). Each

delayed neutron precursor group is characterized by a precursor concentration lC , a decay

constant lλ and a group delayed neutron yield per fission ld ,ν . The group delayed neutron

fraction lβ is defined as

ν
ν

β ld
l

,= (4.3)

where ν is the total net neutron yield per fission, defined previously

dp ννν += (4.4)

Here pν is the prompt neutron yield per fission and dν the total delayed neutron yield per

fission, defined as

∑
=

=
6

1
,

l
ldd νν (4.5)

30

The total delayed neutron fraction is defined as the sum of the delayed neutron fraction for all

precursor groups.

∑
=

=
6

1l
lββ (4.6)

4.1.1.1 Calculating Delayed Neutron Parameters for Fuel Mixtures

The prompt and delayed neutron yields are dependent on the fissionable nuclide under

consideration. For materials consisting of a mixture of fissionable nuclides, current

approaches use a fission rate weighting to calculate the effective delayed neutron yields for

the mixture. Based on simplified form of the CASMO-3 implementation (Edenius and

Forssen 1989), the delayed neutron yield for a mixture of isotopes may be written as shown

below.

∑

∑
′′′

′′′
=

i
i

i
iild

ld
F

F,,

,

ν
ν (4.7)

∑

∑
′′′

′′′
=

i
i

i
ii

F

Fν
ν (4.8)

Here, the subscript i denotes each fissionable isotope and iF ′′′ is the fission rate density for

each isotope in the material. The delayed neutron fraction may then be calculated using

Equation (4.3).

∑

∑
′′′

′′′
=

i
ii

i
iild

l F

F

ν

ν
β

,,

 (4.9)

It should be noted that, as is the case in the TINTE code (Gerwin 1987), no attempt is made to

correct for the group structure during the calculation of β , i.e. the physical β is used without

correction, regardless of group structure.

31

4.1.1.2 Delayed Neutron Data

The delayed neutron data supplied in the ENDF/B nuclear data libraries (Chadwick et. al.

2006) is given for each fissionable isotope i . Thus values for il ,λ and ild ,,ν are known. In

order to simplify the calculation, a common set of six decay constants for all fissionable

isotopes can be chosen, and the values for ild ,,ν recalculated using least squares regression.

These modified delayed neutron yields can be obtained from a number of sources. Those

values used in the TINTE code are given in Table 2, Table 3 and Table 4 (Clifford 2007).

Table 2: Common Set of Decay Constants for the 6 Delayed Neutron Precursor Groups

Delayed Neutron
Group

Group Decay
Constant lλ

1 3.87

2 1.4

3 0.311

4 0.116

5 0.03174

6 0.01272

Table 3: Isotope-Dependent Fractional Fission Yield (β) of Delayed Neutrons

Fractional Fission Yield (β) of Delayed Neutrons [%]

235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu

0.6904 2.3981 0.2962 0.4342 1.1693 1.7510 0.2245 0.2850 0.5354 1.0524

Table 4: Isotope- and Group-Dependent Delayed Neutron Fractions (ββ /l)

Fractional Fission Yield (ββ /l) for Delayed Neutron Precursor Group [%]
Group

235U 232Th 233U 234U 236U 238U 239Pu 240Pu 241Pu 242Pu

1 2.6 2.8 0.6 2.6 2.6 4.0 1.2 2.2 0.3 1.0

2 12.8 18.0 11.9 12.8 12.8 30.5 14.1 15.3 24.7 23.7

3 40.7 45.6 26.0 40.7 40.7 37.7 31.0 32.8 32.1 39.1

4 18.8 16.0 27.0 18.8 18.8 13.0 26.3 24.1 22.1 18.9

5 21.3 14.1 25.8 21.3 21.3 13.6 18.6 18.1 15.2 12.9

6 3.8 3.5 8.7 3.8 3.8 1.2 8.8 7.6 5.6 4.5

32

4.1.1.3 Delayed Neutron Precursor Concentrations

The time-dependent behavior of each delayed neutron precursor group may be represented by

the differential equation shown below (Ott and Neuhold 1985).

llld
l CF

kdt

dC λν −′′′= ,

1
 (4.10)

Where ∑∑ Σ=′′′=′′′
g

gfg
i

iFF φ is the material fission rate density (fission rate per unit

volume). Here we include the eigenvalue k to be consistent with the Equation (4.2).

4.1.1.3.1 Steady-State Case

For steady-state operation the time-derivative in equation (4.10) is zero and the equation

reduces to

F
k

C ldll ′′′= ,

1νλ (4.11)

Where F ′′′ is the steady-state fission rate density.

4.1.1.3.2 Time-Dependent Case

The derivation that follows is a slightly modified form of that which is applied in the TINTE

code (Gerwin 1987). A linear time-variation in fission rate and constant delayed neutron yield

per fission are assumed for a time interval 01 tt −=∆ . The fission rate density is written as

() ()
∆
−′′′−′′′+′′′=′′′ 0

010

tt
FFFtF ; ()1,0 , ttt ∈

Substitution of this into Equation (4.10) allows the time-dependent group concentration to be

solved for.

F
k

C
dt

dC
ldl

l ′′′=+ ,

1νλ

33

The above equation is an ordinary differential equation of the first kind () ()tqCtpC ll =+ɺ .

The solution for ()tCl for time 0tt > may be determined using integrating factors.

()

() ()tF
k

tq

tp

ld

l

′′′=

=

,

1ν

λ

The integrating factor ()tµ is found as follows.

() ()000
'''

tt
dtdttp

l

t

t
l

t

t eee −=∫=∫= λλ
µ

The solution for ()tCl becomes

()
() () () ()

()0

0

02

0
0,

' ''
1

tt

l

t

t ld
ttt

t
l le

tCdttF
k

edttq
tC −

− +′′′
==
∫∫

λ

λ ν

µ

µ

Assuming lλ constant over the time-interval, this may be rewritten to solve for ()tCllλ .

() () () () ()

() () () ()

() () () () ()

() () ()() () ()()()

() () ()() () ()()()




















−−+

∆
′′′−′′′

+−′′′+=
























−−+

∆
′′′−′′′

+−′′′+=
























−

∆
′′′−′′′

+′′′+=






















∆
−′′′−′′′+′′′+=













′′′+=

−−−−

−−−−

−−−−

−−−

−−−

∫∫

∫

∫

111
1

11
1

1
11

'''
1

'
'

1

''
1

0
01

0,0

02

01
0,0

'
0

01'
0,0

'0
010,0

'
,0

000

000

0

0

0

0

0

0

0

0

0

0

0

tte
FF

eF
k

tCe

tte
FF

eF
k

tCe

ettdt
FF

edtF
k

tCe

e
tt

FFFdt
k

tCe

etFdt
k

tCetC

l
tt

l

tt
ldll

tt

l
tt

l

tt

l
ldlll

tt

tt
t

t

tt
t

t

ldlll
tt

tt
t

t

ldlll
tt

tt
t

t

ldlll
tt

ll

lll

lll

lll

ll

ll

λ
λ

νλ

λ
λλ

νλλ

νλλ

νλλ

νλλλ

λλλ

λλλ

λλλ

λλ

λλ

() () () ()() () ()()







−−+

∆
′′′−′′′

+−′′′+= −−−−−− 11
1

0
01

0,0
000 tte

FF
eF

k
etCtC l

tt

l

tt
ld

tt
llll

lll λ
λ

νλλ λλλ (4.12)

At 1tt =

() () () 








∆
−∆+′′′−′′′+−′′′+==

∆−
∆−∆−

l

l
ldllllll

l

ll
e

FFeF
k

eCCtC
λ

λνλλλ
λ

λλ 1
1

1
010,

01
1

34

The final expression for the precursor concentration at the end of the time interval becomes





















∆
−−′′′+








−

∆
−′′′+=

∆−
∆−

∆−
∆−

ll
ldllll

l

l

l

l
e

Fe
e

F
k

eCC
λλ

νλλ
λ

λ
λ

λ 1
1

11
10,

01 (4.13)

For the discretization of the time-dependent diffusion equation (in upcoming section 4.1.2),

an accurate expression is required for the interval mean precursor concentrations. The reason

for this is discussed in the upcoming section. The interval mean neutron production is

calculated by a time integration of equation (4.12) as follows.

() ()() () ()()

() ()()

() ()()

()()

() () ()[] ()



















∆
−+

∆
∆

−

′′′+



















∆
+−

∆
−−

∆
∆

−

−′′′+
∆

−=
















 −∆
∆

′′′−′′′+′′′+
∆

−

















∆
′′′−′′′−′′′−=





















∆−∆

∆
′′′−′′′+∆′′′+−


















∆
′′′−′′′−′′′−

∆
=
































 −−−−−
∆

′′′−′′′+−′′′+

−

















∆
′′′−′′′−′′′−

∆
=

































−−
∆

′′′−′′′+′′′+

−−

















∆
′′′−′′′−′′′−

∆
=





















−−

∆
′′′−′′′+′′′+

















∆
′′′−′′′−′′′−

∆
=

















−−+

∆
′′′−′′′+−′′′+

∆
=

∆−

∆−

∆−

∆−

∆−

∆−

∆−

−−−−

−−

−−−−−−

∫

∫

∫

ll

l
ld

lll

l
ld

l
ll

l

l
ld

ll
ldll

l
l

ldld
ll

ldll

l
l

ldld

ll
ldll

t

t l
l

ldld

tttt

ll
ldll

t

t l
l

ld
tt

l
ldll

t

t l
tt

l

tt
ld

tt
llll

l

l

l

l

l

l

l

ll

l

lll

e

F
k

e

e

F
k

e
C

FF
F

k

eFF
F

k
C

FF
F

k

eFF
F

k
C

tttttt
FF

k
ttF

k

eFF
F

k
C

tt
FF

k
F

k
dt

ee
FF

F
k

C

tt
FF

Fe
FF

F
k

Cdt

tte
FF

eF
k

eCdtC

λλ
λν

λλλ
λν

λ
λ

λ
λ

ν
λλ

νλ

λ
λ

νν
λλ

νλ

λ
λ

νν

λλ
νλ

λ
λ

νν

λλ
νλ

λ
λ

ν
λ

νλ

λ
λ

νλλ

λ

λ

λ

λ

λ

λ

λ

λλ

λ

λλλ

1

2

1
1

1

1

2

11
1

1
11

1
2

111

2

1111

2

111

11

1

1
11

11

1

1
11

11
11

1,

0,
0

01
0,

01
0,

0

2
01

,0,
01

0,
0

01
2

00
2

01
01

,010,

01
0,

0

0
01

,0,

01
0,

0

0
01

0,
01

0,
0

0
01

0,
0

1

0

0001

1

0

0

1

0

000

35

And finally









































∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+

∆
−=

∆−∆−
∆−

∆−

l

l

l

l
ld

l
llll

ll

l

l

e

F

e
e

F
k

e
CC

λ
λ

λ
λ

ν
λ

λλ

λλ
λ

λ

1
1

2

1

1

2

111
10,

0 (4.14)

4.1.2 Time Discretization of the Few-Group Diffusion Equations

The non-discretized form of the few-group diffusion equation is given by Equation (4.1). The

production P ′′′ may be replaced by the fission rate F ′′′ , using the previous definition

F
k

P ′′′=′′′ ν1
.

()

Gg
QC

F
k

D
tv

g
l

lllgd

pgp
gg

g
gg

sgsgaggg
g

g

,,1
,

11

6

1
,,

,
'

'
'

…=
++

′′′+Σ+Σ+Σ−∇∇=
∂

∂

∑

∑

=

≠

→

λχ

νχφφφ
φ

In considering a choice of time-discretization for the above equation, one must consider the

accuracy requirements for each physical process taking place. We note that the required time

intervals may vary from fractions of a second to minutes. Similarly, we note that the six

delayed neutron groups lie within this range of times, therefore it is important to treat the

delayed neutron terms with some accuracy. The derivation that follows, similar to that used in

TINTE (Gerwin 1987), is a manipulation of the diffusion equation into a time-discretized

form, which pays particular attention to the delayed neutron treatment and assumes an

average rate of change for the time interval. The final outcome of this derivation is presented

in Equations (4.21) through (4.24).

We seek the solution to this equation for the case of
()

g
g

t

t
φ

φ
ɺ=

∂
∂

, where gφɺ is the average

time derivative over the interval 01 tt −=∆ , such that

() ()()012

1
tt ggg φφφ ɺɺɺ += (4.15)

36

We further assume that

()
∆
−

=
01

1
gg

g t
φφ

φɺ

We define the end-of-interval and start-of-interval functions

()

() () g
l

lllgdpgp
gg

g
gg

sgsgaggg

g
g

g

QCF
k

D

t
v

++′′′+Σ+Σ+Σ−∇•∇=

=

∑∑
=≠

→
6

1
1,,1,

'

1
'

'11

1
1

1

1
Re

λχνχφφφ

φɺ

(4.16)

and

()

() () g
l

lllgdpgp
gg

g
gg

sgsgaggg

g
g

g

QCF
k

D

t
v

++′′′+Σ+Σ+Σ−∇•∇=

=

∑∑
=≠

→
6

1
0,,0,

'

0
'

'00

0
0

1

1
Re

λχνχφφφ

φɺ

(4.17)

We may now write

() () ()01
01 ReRe

2

111

2

11
ggg

g
g

g
g

g

t
v

t
vv

+=













+= φφφ ɺɺɺ

Because the average delayed neutron precursor concentrations lC are known (derived

previously in section 4.1.1), we replace the term 






 +∑∑
==

6

1
0,,

6

1
1,,2

1

l
lllgd

l
lllgd CC λχλχ , contained

in ()01 ReRe
2

1
gg + , with ll Cλ as given in Equation (4.14).

































































∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+

∆
−+








 −−+=

+






 −−+=

∆−∆−
∆−

∆−

=

==

===

∑

∑∑

∑∑∑

l

l

l

l
ld

l
ll

l
lgd

l
lllgd

l
lllgdgg

l
lllgd

l
lllgd

l
lllgdggg

g

ll

l

l

e

F

e
e

F
k

e
C

CC

CCC
v

λ
λ

λ
λν

λ
λχ

λχλχ

λχλχλχφ

λλ
λ

λ

1
1

2

1

1

2

111

ReRe
2

1

ReRe
2

11

10,
0

6

1
,,

6

1
0,,

6

1
1,,

01

6

1
,,

6

1
0,,

6

1
1,,

01ɺ

37

∑∑

∑∑

∑∑

∑∑∑

=

∆−

=

∆−
∆−

∆−

==

=

∆−

=

∆−
∆−

=

∆−

==





















∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+




















∆
−−−−+=





















∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+









∆
−+







 −−+=

6

1
,,,1

6

1
,,,0

6

1
0,,

6

1
1,,

01

6

1
,,,1

6

1
,,,0

6

1
0,,

6

1
0,,

6

1
1,,

01

1
1

21
1

1

21
1

1
21ReRe

2

1

1
1

21
1

1

21
1

1
ReRe

2

11

l l

l
ldlgd

l l

l
ldlgd

ll
lllgd

l
lllgdgg

l l

l
ldlgd

l l

l
ldlgd

l l
lllgd

l
lllgd

l
lllgdggg

g

ll

l

l

ll

l

l

e

F
k

e
e

F
k

e
CC

e

F
k

e
e

F
k

e
CCC

v

λ
λνχ

λ
λνχ

λ
λχλχ

λ
λνχ

λ
λνχ

λ
λχλχλχφ

λλ
λ

λ

λλ
λ

λ
ɺ

Equation (4.15) can now be used to solve for ()1

1
t

v g
g

φɺ .

() ()

∑

∑

∑∑

=

∆−

=

∆−
∆−

∆−

==





















∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+










∆
−−−−+=+

6

1
,,,1

6

1
,,,0

6

1
0,,

6

1
1,,

01
01

1
1

21
1

1

21
1

1
21ReRe

11

l l

l
ldlgd

l l

l
ldlgd

ll
lllgd

l
lllgdggg

g
g

g

l

l

l

l

e

F
k

e
e

F
k

e
CCt

v
t

v

λ
λνχ

λ
λνχ

λ
λχλχφφ

λ

λ
λ

λ
ɺɺ

Given that () 0
0 Re

1
gg

g

t
v

=φɺ , the equation may now be reduced.

()

∑∑

∑∑

=

∆−

=

∆−
∆−

∆−

==





















∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+










∆
−−−−=

6

1
,,,1

6

1
,,,0

6

1
0,,

6

1
1,,

1
1

1
1

21
1

1

21
1

1
21Re

1

l l

l
ldlgd

l l

l
ldlgd

ll
lllgd

l
lllgdgg

g

ll

l

l

e

F
k

e
e

F
k

e
CCt

v

λ
λνχ

λ
λνχ

λ
λχλχφ

λλ
λ

λ
ɺ

38

This may be expanded using the definition for 1Reg in Equation (4.16).

() () ()

() ()

∑

∑

∑∑

∑∑

∑∑

∑∑

=

∆−
∆−

=

∆−

∆−

=≠

→

=

∆−

=

∆−
∆−

∆−

==

=≠

→





















∆
∆

−−
+′′′+





















∆
∆

−−
−′′′+′′′+










∆
−−−+Σ+Σ+Σ−∇•∇=





















∆
∆

−−
−′′′+





















∆
∆

−−
+′′′+










∆
−−−−

+++Σ+Σ+Σ−∇•∇=

6

1
,,,0

6

1
,,,11,

6

1
0,,

'

1
'

'11

6

1
,,,1

6

1
,,,0

6

1
0,,

6

1
1,,

6

1
1,,1,

'

1
'

'11
1

1

21
1

1
1

21
11

1
21

1
1

21
1

1

21
1

1
21

11

l l

l
ldlgd

l l

l
ldlgdpgp

ll
lllgdg

gg
g

gg
sgsgaggg

l l

l
ldlgd

l l

l
ldlgd

ll
lllgd

l
lllgd

g
l

lllgdpgp
gg

g
gg

sgsgagggg
g

l

l

l

l

ll

l

l

e
e

F
k

e

F
k

F
k

e
CQD

e

F
k

e
e

F
k

e
CC

QCF
k

Dt
v

λ
λ

νχ

λ
λ

νχνχ

λ
λχφφφ

λ
λ

νχ
λ

λ
νχ

λ
λχλχ

λχνχφφφφ

λ
λ

λ

λ

λλ
λ

λ

ɺ

() () ()










∆
−−−



















∆
∆

−−
+′′′+











































∆
∆

−−
−+′′′+

+Σ+Σ+Σ−∇•∇=

∆−

==

∆−
∆−

=

∆−

≠

→

∑∑

∑

∑

ll
lllgd

l l

l
ldlgd

l l

l
ldlgdpgp

g
gg

g
gg

sgsgagggg
g

l

l

l

l

e
C

e
e

F
k

e

F
k

QDt
v

λ
λχ

λ
λνχ

λ
λνχνχ

φφφφ

λ

λ
λ

λ

1
21

1

21
1

1
1

21
1

1

6

1
0,,

6

1
,,,0

6

1
,,,,1

'

1
'

'11
1

ɺ

39

Three factors may defined from the given equation.

� The new prompt production term is given by

∑
=

∆−





















∆
∆

−−
−+=

6

1
,,,,

1

1
1

21
l l

l
ldlgdpgpg

le

λ
λ

νχνχνζ

λ

In terms of the delayed neutron fraction, this may be written as

() ∑
=

∆−





















∆
∆

−−
−+−=

6

1
,,,

1

1
1

211
l l

l
llgdgpg

le

λ
λ

βχβχζ

λ

 (4.18)

� The old prompt production term is given by

∑
=

∆−
∆−





















∆
∆

−−
+=

6

1
,,,

0

1

21
l l

l
ldlgdg

l

l
e

e

λ
λ

νχνζ

λ
λ

In terms of the delayed neutron fraction, this may be written as

∑
=

∆−
∆−





















∆
∆

−−
+=

6

1
,,

0

1

21
l l

l
llgdg

l

l
e

e

λ
λ

βχζ

λ
λ

 (4.19)

� The delayed neutron source term is given as










∆
−−=

∆−

=
∑

ll
lllgdgd

le
CQ

λ
λχ

λ1
21

6

1
0,,, (4.20)

The fully time-discretized group diffusion equation with delayed neutron feedback may now

be written.

() () [] gdggg
gg

g
gg

sgsgaggg
g

gg QFF
k

QD
v ,0

0
1

1

'

1
'

'11
01

1 −′′′+′′′++Σ+Σ+Σ−∇•∇=
∆

−
∑

≠

→ νζνζφφφ
φφ

40

This may be written in a simplified form

() g
gg

ggggggg
g

gg
SCAD

v
+=+∇•∇−

∆
−

∑
≠

→
'

1
''

11
01

φφφ
φφ

, Gg ,,1…= (4.21)

where

fggsgagg k
A Σ−Σ+Σ= νζ 11 (4.22)

'
1'

'

1
, fgg

gg
sgg k

C Σ+Σ= →
→ νζ… , gg ≠' (4.23)

ggdgg QQF
k

S +−′′′= ,0
0 1νζ (4.24)

Equations (4.21) through (4.24) represent the fully time-discretized set of multi-group

diffusion equations and are suitable for direct implementation in FOAM.

4.1.2.1 Steady-State Case

The steady-state forms of equations (4.18), (4.19) and (4.20) may be written by taking the

limit as the time interval ∆ tends to infinity, yielding the following.

() ∑
=

+−=
6

1
,,,

1 1
l

llgdgpg βχβχζ (4.25)

∑
=

=
6

1
,,

0

l
llgdg βχζ (4.26)

∑
=

=
6

1
0,,,

l
lllgdgd CQ λχ (4.27)

4.1.3 The In-cell Spectrum Solution

In order to apply the predictor-corrector algorithm, which is discussed later in section 4.4.1.3,

a coupled solution for the group fluxes is required in each mesh cell. The derivation that

follows yields a matrix equation which may be used to solve for the coupled solution of the

group fluxes in a control volume, assuming a fixed leakage through the control volume

surface.

41

If we assume that the spatial dependence of the neutron flux ()ggD φ∇•∇ may be linearised

by defining buckling terms, a buckling term gB may be used to replace the Laplacian

operator such that

() () ggggg BDD φφ 2≈∇•∇ (4.28)

Equation (4.21) may therefore be rewritten as

() gg
ggg

ggggggggg
g

S
v

CABD
v

+
∆

=−+−
∆ ∑

≠
→

0

'

1
''

1121 11 φφφφφ , Gg ,,1…= (4.29)

In matrix form, this becomes



























+
∆

+
∆

+
∆

=















































+−
∆

−−

−+−
∆

−

−−+−
∆

→→

→→

→→

⋮

⋮

⋱⋮⋮⋮

⋯

⋯

⋯

3
0
3

3

2
0
2

2

1
0

1
1

1
3

1
2

1
1

3
2

33
3

3231

232
2

22
2

21

13121
2

11
1

1

1

1

1

1

1

S
v

S
v

S
v

ABD
v

CC

CABD
v

C

CCABD
v

φ

φ

φ

φ
φ
φ

The above matrix equation is similar in form to the coupled equations used for spectrum

calculations. The solution to the set of equations is unstable in reflectors, and other regions

with low fission rates (Gerwin 1987). In these regions, the absorption of neutrons is

significantly greater than the production. In order to obtain a non-zero solution this must be

transformed into a fixed source problem. As a first attempt to bypass this problem, the cell

neutron leakage is included as an explicit source rather than through implicit linearised

buckling values. This assumption may be applied for all cells within the solution domain,

regardless of whether they contain fuel or not. Thus the in-cell solution, in matrix form,

becomes



























+−
∆

+−
∆

+−
∆

=















































+
∆

−−

−+
∆

−

−−+
∆

→→

→→

→→

⋮

⋮

⋱⋮⋮⋮

⋯

⋯

⋯

33
0
3

3

22
0
2

2

11
0

1
1

1
3

1
2

1
1

3
3

3231

232
2

21

13121
1

1

1

1

1

1

1

SL
v

SL
v

SL
v

A
v

CC

CA
v

C

CCA
v

φ

φ

φ

φ
φ
φ

 (4.30)

42

where 12
gggg BDL φ= , the leakage based on the guess value for 1

gφ .

4.1.4 Eigenvalue Calculation

The effective reactor multiplication constant (k-effective) is generally defined as the ratio of

neutron production to neutron losses. In the presence of delayed neutrons, the definition is

somewhat changed. We therefore consider the expanded form of Equation (4.21) in order to

calculate this value.

() () [] gdggg
gg

g
gg

sgsgaggg
g

gg QFF
k

QD
v ,0

0
1

1

'

1
'

'11
01

1 −′′′+′′′++Σ+Σ+Σ−∇•∇=
∆

−
∑

≠

→ νζνζφφφ
φφ

This is rearranged to solve for k .

() () gdg
gg

g
gg

sgsgaggg
g

gg

gg

QQD
v

FF
k

,
'

1
'

'11
01

0
0

1
1

~

+−Σ−Σ+Σ+∇•∇−
∆

−

′′′+′′′
=

∑
≠

→ φφφ
φφ

νζνζ

This gives a definition for the local k-effective k
~

. The global k-effective is calculated using

domain and energy group integrated forms of the terms in the expression above.

()

() ()

∫ ∑∫ ∑

∫ ∑ ∑∫ ∑

∫ ∑









−








+






















Σ−∇•∇−Σ+Σ+













∆
−









′′′+′′′

=

==

= ≠

→

=

=

V

G

g
gV

G

g
gd

V

G

g gg
g

gg
sgggsgagV

G

g g

gg

V

G

g
gg

dVQdVQ

dVDdV
v

dVFF

k

11
,

1 '

1
'

'11

1

01

1
0

0
1

1

φφφ
φφ

νζνζ

We note that the scattering terms between energy groups cancel each other, i.e.

∑ ∑
= ≠

→ =








Σ−Σ

G

g gg
g

gg
sgsg

1 '

1
'

'1 0φφ

The expression for k therefore becomes

()

() ∫ ∑∫ ∑∫ ∑∫ ∑

∫ ∑









−








+








∇•∇−Σ+













∆
−









′′′+′′′

=

====

=

V

G

g
gV

G

g
gdV

G

g
gggagV

G

g g

gg

V

G

g
gg

dVQdVQdVDdV
v

dVFF

k

11
,

1

11

1

01

1
0

0
1

1

φφ
φφ

νζνζ

43

We are generally only concerned with calculating k-effective for the steady-state case. In this

case the time-dependent term is zero. Also, the volume integral can be replaced by a discrete

sum over the mesh elements.

global
d

global
loss

global
p

PR

P
k

+
= (4.31)

The global prompt neutron production rate is defined as

()∑ ∑ 







′′′+′′′=

=j
j

G

g
gg

global
p VFFP

1
0

0
1

1 νζνζ (4.32)

The global neutron loss rate is defined as

()∑ ∑ 







∇•∇−Σ=

=j
j

G

g
gggag

global
loss VDR

1

11 φφ (4.33)

The global delayed and fixed neutron production rate is defined as

()∑ ∑ 







+=

=j
j

G

g
ggd

global
d VQQP

1
, (4.34)

In the above equations, the subscript j indicates the mesh cells.

4.1.5 Boundary Conditions

The extrapolated length and albedo boundary conditions (BCs), commonly used in neutron

diffusion calculations, specify the neutron current at the boundary as a linear function of the

neutron flux in the cell lying adjacent to the boundary. These cannot easily be defined using a

combination of Dirichlet or Neumann BCs, which require fixed values or fixed gradients at

the boundary. A mathematical description for each of these BCs is derived in the next

sections, in a form which can be directly implemented in FOAM.

4.1.5.1 The Extrapolated Length Boundary Condition

We consider a discrete unstructured mesh cell P, with an edge coinciding with the domain

boundary. Beyond this boundary, a vacuum is assumed to exist. A widely used approximation

to this vacuum boundary for diffusion calculations is the extrapolated length boundary

condition (Stacey 2001). The extrapolated length boundary specifies that the neutron flux will

44

vanish at some point beyond the boundary. Thus the neutron flux is zero at a given distance

extrapλ past the boundary, where Dextrap 37104.0 ×=λ . The boundary condition is depicted in

Figure 2.

P

B
ou

nd
ar

y

B
O

extrapλ

PBx∆ x

φ
P B O

Pφ

Bφ

0=φ

Figure 2: The Extrapolated Length Boundary Condition

The gradient at the boundary, ()Bφ∇ , is numerically approximated as

()
PB

PB
B x∆

−
≈∇

φφφ

This must correspond with the gradient from point B to point O.

extrap

B

extrap

B

PB

PB

x λ
φ

λ
φφφ

−=
−

=
∆

− 0

Rearranging this yields the neutron flux at the boundary.

P
PBextrap

extrap
B x

φ
λ

λ
φ

∆+
= (4.35)

The gradient at the boundary may now be written as

() P
PBextrap

B x
φ

λ
φ

∆+
−=∇ 1

 (4.36)

Equations (4.35) and (4.36) are sufficient to fully define the extrapolated length boundary

condition in FOAM.

45

4.1.5.2 The Albedo Boundary Condition

The albedo α , the ratio of outgoing to incoming neutron current at the boundary, may be

used to determine the neutron flux within a mesh according to the following relationship

(Stacey 2001).










+
−−=







 ∇
α
αφ

φ 1

1

2

11

B

D

Thus the flux gradient at the boundary may be written directly as

()
PB

PB
BBB x

D
∆

−
≈









+
−−=∇

φφφ
α
αφ

1

1

2

1

PBPBB Dx φ
α
αφ =

















+
−∆+∴

1

1

2

1
1

Rearranging this yields the neutron flux at the boundary.

P

BPB

B

Dx

φ

α
α

φ









+
−∆+

=

1

1

2

1
1

1

(4.37)

The gradient at the boundary may now be written.

() P

PBB

B

B

xD

D

φ

α
α

α
α

φ
∆









+
−+










+
−−

=∇

1

1

2

1
1

1

1

2

1

() P

PB
B

B

x
D

φ

α
α

φ
∆+









−
+

−=∇

1

12

1

(4.38)

From the above equations, it is possible to relate the albedo boundary condition to an

equivalent extrapolated length albedoλ (see Section 4.1.5.1) using the expression

B
albedo

D








+
−=

α
α

λ 1

1

2

11
 (4.39)

Equations (4.37) and (4.38) can therefore be rewritten as

P
PBalbedo

albedo
B x

φ
λ

λφ
∆+

= (4.40)

46

() P
PBalbedo

B x
φ

λ
φ

∆+
−=∇ 1

 (4.41)

Equations (4.40) and (4.41) relate directly to Equations (4.35) and (4.36).

4.2 Iodine, Xenon and Other Neutron Poisons

Certain fission products (Stacey 2001) will act as neutron absorbers and their formation tends

to reduce the global reactor multiplication constant (k-effective). Some of these fission

products are known as saturating fission products because their half-lives are sufficiently

short that an equilibrium is reached between their production, decay and absorption during

normal reactor operation. These isotopes will influence reactor operation in many cases such

as reactor startup, shutdown and power level changes and therefore their influence must be

taken into account. Of the saturating fission products, the isotopes 135Xe and 149Sm are

generally considered the most important.

Xenon-135 has a large thermal absorption cross-section of approximately b6106.2 × and is

produced directly from fission and from the decay of 135I. 135I is produced from the decay of

135Te, which is a direct fission product. The half-life of 135Te (19 s) is sufficiently small, that a

common approximation is to assume the 135I is formed directly from fission with yield

TeI γγ = (Stacey 2001).

Samarium-149 has a large thermal absorption cross-section of approximately b4104× and is

produced by the decay of 149Pm, which in turn is formed after the decay of 149Nd. The half-

life of 149Nd is sufficiently small (1.7 h) that 149Pm can be assumed to be a direct fission

product with yield NdPm γγ = .

In the cases of both 135Xe and 149Sm, as well as the isotopes 151Sm and 157Gd, the decay chain

may be represented as shown in Figure 3. Note that in this context, we refer to the production

and decay of the generic isotopes XI → , which can refer to any isotope pair that may be

modeled according to Figure 3.

47

I

X

β - λI

X’
(n,γ)

β - λX

σX

X’’

Figure 3: Transmutation Decay chain for a Generic Neutron Poison

The time-dependent concentration of the generic isotopes X and I in the above figure may

be written in differential equation form.

() () ()tItFtI
dt

d
II λγ −′′′= (4.42)

() () () () ()tXttItFtX
dt

d

g
ggXXIX 










+−+′′′= ∑ φσλλγ , (4.43)

The TINTE code models what are considered to be the four important isotope pairs in short

term HTGR dynamics, namely XeI 135135 → , PmSm 149149 → , PmSm 151151 → and

GdEu 157157 → . Table 5 summarizes the decay constants for these isotope pairs as

implemented in TINTE.

Note that no assumption has been made regarding the fission yields Xγ and Iγ , or regarding

the group-wise microscopic absorption cross-section of the daughter isotope gX ,σ . These

values are assumed to be provided as calculation input.

48

Table 5: Decay Constants of Important Neutron Poisons Decay Chains

Isotope Pair Parent Isotope Daughter Isotope

 Isotope (I)
Decay Constant

Iλ [s-1]
Isotope (X)

Decay Constant

Xλ [s-1]

1 I-135 2.88E-5 Xe-135 2.12E-05

2 Pm-149 3.63E-6 Sm-149 1.00E-30*

3 Pm-151 6.88E-6 Sm-151 5.75E-09

4 Eu157 1.26E-5 Gd-157 1.00E-30*

4.2.1 Steady-State Case

For the steady-state case, the time-derivatives in equations (4.42) and (4.43) are zero. The

steady-state concentration of the parent isotope I may be written.

FI
I

I ′′′=
λ
γ

 (4.44)

This may be substituted into equation (4.43) to yield the steady-state concentration of the

daughter isotope X .

()
FX

g
ggXX

IX ′′′
+

+
=

∑ φσλ
γγ

,

 (4.45)

4.2.2 Time-Dependent Case

We assume a constant fission rate for the time interval 01 tt −=∆ .

() ()012

1
FFFtF ′′′+′′′=′′′=′′′ , ()1,0 , ttt ∈

* These isotopes are stable.

49

Substitution of this into Equation (4.42) allows the time-dependent concentration of the parent

isotope I to be solved for.

() ()

() () () ()

() ()

() ()()

() () ()()00

00

0

0

0

0

0

0

1

1

'

'

0

0

'
0

'
0

tt

I

Itt

tt

I

Itt

tt
t

t

I
tt

tt
I

t

t

tt

II

II

II

II

II

eFeItI

eFIe

edtFIe

eFdttIetI

tIFtI
dt

d

−−−−

−−−

−−−

−−−

−′′′+=









−′′′+=













′′′+=













′′′+=

−′′′=

∫

∫

λλ

λλ

λλ

λλ

λ
γ

λ
γ

γ

γ

λγ

At the end of the time interval (1tt =)

()∆−∆− −′′′+= II eFeII
I

I λλ

λ
γ

101 (4.46)

A solution may now be found for the daughter isotope X , starting with equation (4.43). We

define

∑+=
g

ggXX φσλλ ,2 (4.47)

In the above definition, gX ,σ and gφ are assumed constant over the time interval. Equation

(4.43) may now be written as

() () ()
() ()()

() () ()0

00

0

0

2

1
tt

IIIX

tt
I

tt
IX

IX

I

II

eFIF

eFeIF

tIFtXtX
dt

d

−−

−−−−

′′′−+′′′+=

−′′′++′′′=

+′′′=+

λ

λλ

γλγγ
γλγ

λγλ

This is an ordinary differential equation of the first kind () ()tqXtpX =+ɺ . The solution for

()tX for time 0tt > may be determined using integrating factors.

()
() () () ()0

0

2

tt
IIIX

IeFIFtq

tp
−−′′′−+′′′+=

=
λγλγγ

λ

50

The integrating factor ()tµ is found as follows.

() ()020
2

0
'''

tt
dtdttp

eee
t

t

t

t −=∫=∫= λλ
µ

The solution for ()tX becomes

()
() () () () ()[] ()

()

() () () () () ()[]{ }
() () () () () ()(){ }∫ ∫

∫

∫∫

−−−−−

−−−−−

−

−−−

′′′−+′′′++=

′′′−+′′′++=

+′′′−+′′′+
==

t

t

t

t

tt
II

tt
IX

tt

t

t

tt
IIIX

tttt

tt

t

t

tt
IIIX

ttt

t

dteFIdteFtXe

dteFIFetXe

e

tXdteFIFedttq
tX

I

I

I

0 0

020202

0

00202

02

0

002

0

''

'

'

'
0

'
0

'
00

00
'

λλλλ

λλλ

λ

λλ

γλγγ

γλγγ

γλγγ

µ

µ

() () () () () () ()(){ }∫ ∫
−−−−− ′′′−+′′′++=∴

t

t

t

t

tt
II

tt
IX

tt dteFIdteFtXetX I

0 0

020202 '' '
0

'
0

λλλλ γλγγ

The integrals may be evaluated and the equation simplified.

() () () () ()() () ()()()

() () ()
()

()
() ()

I

tttt

II

tt

IX
tt

tt

I
II

tt
IX

tt

ee
FI

e
FetX

eFIeFtXetX

I

I

λλ
γλ

λ
γγ

λλ
γλ

λ
γγ

λλλ
λ

λλλλ

−
−′′′−+−′′′++=









−
−

′′′−+−′′′++=

−−−−−−
−−

−−−−−

2
0

2
0

2
0

2
0

02002

02

020202

1

1
1

1
1

At the end of the time interval (1tt =) the daughter isotope concentration becomes

() ()
I

IIIX

ee
FI

e
FeXX

I

λλ
γλ

λ
γγ

λλλ
λ

−
−′′′−+−′′′++=

∆−∆−∆−
∆−

2
0

2
01

22

2
1

 (4.48)

4.3 Power Production

The time-dependent power production, including decay heat production, were not considered

for the FOAM implementation. As an approximation, all heat produced is assumed to be

prompt and proportional to the fission rate.

FEQ f ′′′=′′′ (4.49)

where Q ′′′ is the power density and fE the energy per fission.

51

4.4 Solution Algorithms

In the preceding sections 4.1 through 4.3, a set of equations has been presented in a form

suitable for implementing in FOAM. It is at this point that we now consider the solution

strategy and algorithms that are required for the implementation. Section 4.4.1 considers the

coupled solution of the neutron diffusion equation. Sections 4.4.2 and 4.4.3 introduce the

complete algorithms for the steady-state and transient calculations respectively, and

section 4.4.4 describes the inner iteration, i.e. the coupled calculation of neutron flux and

neutron poison concentrations.

4.4.1 The Solution of the Time-Dependent Few Group Diffusion Equations

The implicit solution of the set of equations defined by equation (4.21) is not straightforward

using the present FOAM framework. While the framework readily solves the gth group

equation, the framework does not directly handle the coupling between the different energy

group equations. The addition of this direct coupling to the framework is work in progress

(Jasak 2007). This is discussed further in section 6.4.2. In the present absence of this feature

an implicit solution for all energy groups requires iteration, explicitly updating the source

contribution ∑
≠

→
gg

gggB
'

1
'' φ at each step.

The coupled solution of the few-group diffusion equations requires a suitable algorithm that

will ensure stability up to time intervals in the order of 60 s, using the present framework’s

features. This stability cannot be easily achieved using an explicit coupling scheme. The

equations for the fast energy groups are a factor of approximately a thousand stiffer than the

thermal group equations. The coupling of these equations therefore poses a problem. This

stiffness difference is due to the differences in mean neutron velocity for fast and thermal

neutrons.

Similarly, the between-group coupling (neutron scattering) forms a relatively large proportion

of the neutron source terms in each equation. Therefore one cannot assume that spectrum

effects are of secondary importance to spatial effects. This presents a problem when

52

implementing the few-group diffusion equation in FOAM. The framework is specifically

tailored towards problems where spatial effects dominate.

The solution of the one-group time-dependent diffusion equation may be carried out very

efficiently using just one line of code.

solve(1/v*fvm::ddt(phi) – fvm::laplacian(D,phi) + A *phi = S);

For more than one energy group, however, because there is currently no implicit block solver

in FOAM, a suitable algorithm for the implicit solution of the group fluxes is required. Some

proposed options for this implicit solution are discussed in the upcoming sections.

4.4.1.1 Explicit (Forward Difference) Group Flux Coupling

The simplest algorithm is an explicit coupling of the group fluxes. Here the out-of-group

source terms are assumed to be dependent only on the start-of-interval fluxes 0'gφ , i.e.

∑
≠

→
gg

gggB
'

0
'' φ

This approximation requires no iteration but is only stable for small time intervals. The

method also has limited accuracy, further requiring small time intervals.

4.4.1.2 Implicit (Backward Difference) Group Flux Coupling

The numerical instability of the time-integration can be ensured by using the backward-

difference algorithm. Here the out-of-group source terms are assumed to be dependent on the

end-of-interval fluxes 1
'gφ , i.e.

∑
≠

→
gg

gggB
'

1
'' φ

The problem, however, arises that the end of interval fluxes are not known and therefore an

iterative scheme is necessary to obtain a coupled solution. A spatially dependent source term

is assumed. For the first iteration, this is assumed to be based on the start-of-interval fluxes.

Starting with the fastest flux group and working down to the slowest group, the group

53

diffusion equations are solved one-by-one to obtain an updated guess for the end-of-interval

group fluxes. The updated guess fluxes are then used to obtain an updated guess of the source

terms and the process is repeated until convergence is obtained.

This algorithm is represented below using pseudo-code.

Guess group source terms
while not converged
 for g=1,2,..., number of energy groups
 solve gth group diffusion equation
 end
 update group source terms

 check convergence
end

It is possible to improve the convergence of the implicit algorithm using a number of

methods, including:

� If the source terms are updated directly following the spatial solution of each group’s

fluxes, the updated source terms propagate faster into the equation system and

convergence can be improved in this way.

� Successive overrelaxation may be used to improve the rate of convergence. Here, a

relaxation factor α is chosen ()20 << α . Each updated group flux is calculated as

() 0*11 1 ggg φαφαφ −+=

where 1
gφ is the updated group flux, and *1

gφ the solution to the gth group diffusion

equation. The choice of factor α greatly affects the rate of convergence. If 1=α , this

method reduces to the standard backwards differencing scheme.

If we consider the solution of the diffusion equation for a single energy group, assuming the

between group terms to be fixed sources, it is clear that this single equation gives an implicit

spatial solution, while the energy-dependence is treated explicitly. Thus, this algorithm is

referred to as spatially-implicit.

54

The explicit treatment of the energy-dependence results in very poor numerical stability,

largely due to the high stiffness of the fast energy group equations in relation to the thermal

group equations. This numerical instability may only be improved using a more advanced

energy coupling.

4.4.1.3 Predictor-Corrector Algorithm

The stability problems associated with the spatially-implicit algorithm of section 4.4.1.2 may

be improved by coupling this with in-cell spectrum calculations (refer to section 4.1.3) for

each mesh cell to obtain a predictor-corrector type algorithm. The spectrum calculation

implicitly couples the energy groups, and treats the spatial coupling explicitly (through

buckling terms). It is thus referred to as an energy-implicit solution.

The predictor-corrector algorithm is represented below using pseudo-code.

Guess group source terms
while not converged
 for g=1,2,..., number of energy groups
 solve for gth energy group fluxes (spatially-impl icit)
 end

 update buckling terms

 for i=1,2,..., number of mesh cells
 in-cell spectrum solution for ith mesh cell (ener gy-implicit)
 end

 update group source terms

 check convergence
end

This simple predictor-corrector algorithm is used as an initial attempt to obtain a stable multi-

group flux solution. The implementation of a more advanced algorithm or block coupled

solution is considered outside of the scope of this research.

4.4.2 Steady-State Eigenvalue Calculation

A pseudo-transient algorithm is used to calculate the eigenvalue and steady-state neutron

fluxes, as in the case of the TINTE code. Initially the neutron flux profile is guessed. This flux

profile is assumed to be user-supplied. An initial eigenvalue (k-effective) of unity is assumed.

55

An artificial time interval is then chosen and the updated neutron fluxes at the end of this

time-interval are calculated. These updated neutron fluxes are then used to calculate an

updated eigenvalue. At each step, the reactor power is normalized to a user-specified power

level. With iteration, the global reactor power, neutron fluxes and eigenvalue will converge to

the steady-state values. This algorithm is depicted in Figure 4.

4.4.2.1 Reducing the Number of Iterations to Convergence

The TINTE code has an optimized controller which ‘steers’ the steady-state calculation, in

order to reduce the number of iterations required for convergence. In order to simplify the

FOAM implementation, only one optimizing measure is applied. The mean neutron velocities

of all energy groups are assumed unity for the duration of the steady-state calculation. This

eliminates the problem of stiffness differences between the diffusion equations for fast and

thermal energy groups, allowing large artificial time intervals to be chosen.

4.4.3 Time-Dependent Calculation

A time-dependent calculation is an initial-value problem, and can only be carried out once the

reactor eigenvalue is known, and the steady-state calculation therefore precedes this. The

time-dependent algorithm is illustrated in Figure 5. The basic iterative strategy of the

algorithm shows only small differences from the steady-state algorithm of section 4.4.2.

These differences include the following.

� No normalization of the reactor power is performed.

� The eigenvalue (k-effective) is not calculated. The value is kept constant following the

steady-state calculation.

� No outer iteration is required for each time-interval.

56

Figure 4: Algorithm for the Steady-state Eigenvalue Calculation

Calculate updated cross-sections
(Not implemented, i.e. fixed cross-

sections)

Update delayed neutron production factors and production,
Equations (4.25), (4.26) and (4.27)

Simultaneously solve for neutron flux and
isotope concentrations at end of time interval,

see Figure 6
(Perform inner iteration)

Calculate updated reactor parameters (fission rate,
neutron production, eigenvalue, leakage), Equations (4.2)

and (4.31)

Calculate updated reactor power and normalize reactor
power, Equation (4.49)

Calculate updated delayed neutron precursor concentrations,
Equation (4.11)

Check convergence of steady-state solution, based on
eigenvalue residual

Converged ?

Next pseudo-transient
time-interval

Start of steady-state
calculation

No

Write steady-state results to
file

Yes

End of steady-state
calculation

57

Figure 5: Algorithm for Time-Dependent Calculation

Calculate updated cross-sections
(Not implemented, i.e. fixed cross-

sections)

Update delayed neutron production factors and production,
Equations (4.18), (4.19) and (4.20)

Simultaneously solve for neutron flux and
isotope concentrations at end of time interval,

see Figure 6
(Perform inner iteration)

Calculate updated reactor parameters (fission rate,
neutron production and leakage), Equation (4.2)

Calculate updated reactor power, Equation (4.49)

Calculate updated delayed neutron precursor
concentrations, Equation (4.13)

Start of time interval
calculation

Write results to file for
time t

End of time-interval
calculation

Perform steady-state
calculation

Next time
interval

58

4.4.4 The Inner Iteration

Both steady-state and time-dependent algorithms require a simultaneous solution for the

neutron flux and strong absorber isotope concentrations. For this, an inner iteration is used to

obtain converged values.

Figure 6: Algorithm for the Inner Iteration

4.5 Closure

In this chapter, a set of equations was presented in a form suitable for direct implementation

in OpenFOAM. These equations, based on the TINTE code, include the discretized multi-

Calculate diffusion equation coefficients, Equations
(4.22), (4.23) and (4.24)

Calculate updated guess of isotope concentrations at end of time
interval, Equations (4.44) and (4.45) (Steady-state) or (4.46) and

(4.48) (Time-dependent)

Calculate updated guess of neutron fluxes at end of time
interval, solve the multi-group diffusion equation,

Equation (4.21)

Check convergence based on isotope concentration and
neutron flux residuals

Converged ?

59

group diffusion equation, and equations for delayed neutron treatment, fission product

poisoning and power production. A set of algorithms for the neutron flux solution, and for full

steady-state and transient solutions were proposed. The OpenFOAM implementation, based

on the equations and algorithms of this chapter, is discussed in chapter 5.

60

5. IMPLEMENTATION DESCRIPTION

Based on the equations and algorithms proposed in chapter 4, a FOAM multi-group diffusion

solver, called diffusionFoam, was coded in C++. Significant effort was devoted to ensuring

that an object-oriented approach to the coding was followed. Specifically, the code was

modularized into a number of classes. In the interest of being concise, detailed information on

all aspects of the implementation have not been provided, however in certain instances

examples have been provided to illustrate the methods used and to emphasise the advantages

of the FOAM framework.

5.1 Class Structure

In total, nine custom classes were created to model different aspects of the nuclear calculation

being performed. An attempt has been made, as far as possible, to separate the various nuclear

phenomena being modelled. In this way future development will allow different models for

each phenomena to be applied, without introducing unnecessary complication. Class diagrams

for the diffusionFoam application are given in Figure 7 and Figure 8. A cross-reference

between the equations of chapter 4 and the diffusionFoam class and namespace members is

given in Table 6.

5.1.1 nuclearField Class

The nuclearField class is primarily concerned with global nuclear parameters, such as k-

effective and global power production. It contains several child fluxGroup objects, each

responsible for the storage of the spatially- and time-dependent scalar neutron flux and flux

leakage for a single broad group. Future development will likely see these broad group fluxes,

as well as calculations such as neutron production, fission rates, total leakage, among others

moved as children into separate objects. Similarly, at present, power production is calculated

within this class. If decay and/or non-local power production is to be taken into account this

should be included in a separate class.

61

IOdictionary

nuclearField

- Ef_: volScalarField
- F_: volScalarField
- fixedSrc_: dimensionedScalar
- globalDelayed_: dimensionedScalar
- globalLoss_: dimensionedScalar
- globalPower_: dimensionedScalar
- globalProd_: dimensionedScalar
- groups_: PtrList<fluxGroup>
- keff0_: dimensionedScalar
- keff_: dimensionedScalar
- mesh_: fvMesh& {readOnly}
- omega_: dimensionedScalar
- P_: volScalarField
- powerDensity_: volScalarField
- steadyStatePower_: dimensionedScalar

+ F() : volScalarField& {query}
+ fixedSrc() : dimensionedScalar& {query}
+ globalPower() : dimensionedScalar& {query}
+ groups() : PtrList<fluxGroup>& {query}
+ groups() : PtrList<fluxGroup>&
+ keff() : dimensionedScalar& {query}
+ keff0() : dimensionedScalar& {query}
+ mesh() : fvMesh& {query}
+ normalizePower() : void
- nuclearField(nuclearField&)
+ nuclearField(fvMesh&, crossSections&)
+ ~nuclearField()
+ omega() : dimensionedScalar& {query}
- operator=(nuclearField&) : void
+ P() : volScalarField& {query}
+ storeAsOld() : void
+ updateFissionRate() : void
+ updateKEffective(delayNeutrons&, fissionProducts&, bool) : void
+ updateLeakage() : void
+ updateNeutronProduction() : void
+ updatePowerDensity() : void

crossSection

- A_: volScalarField
- chi_: volScalarField
- D_: volScalarField
- F_: volScalarField
- index_: label
- mesh_: fvMesh& {readOnly}
- nuF_: volScalarField
- S_: PtrList<volScalarField>
- v_: volScalarField

+ A() : volScalarField& {query}
+ chi() : volScalarField& {query}
- crossSection(crossSection&)
+ crossSection(label, label, fvMesh&, dictionary&)
+ ~crossSection()
+ D() : volScalarField& {query}
+ F() : volScalarField& {query}
+ mesh() : fvMesh& {query}
+ nuF() : volScalarField& {query}
- operator=(crossSection&) : void
+ S() : PtrList<volScalarField>& {query}
+ update() : void
+ v() : volScalarField& {query}

IOdictionary

crossSections

- groups_: PtrList<crossSection>
- mesh_: fvMesh& {readOnly}

- crossSections(crossSections&)
+ crossSections(fvMesh&)
+ ~crossSections()
+ groups() : PtrList<crossSection>& {query}
+ mesh() : fvMesh& {query}
- operator=(crossSections&) : void
+ update() : void

delayNeutronGroup

- beta_: volScalarField
- delay_: delayNeutrons& {readOnly}
- index_: label
- lambda_: dimensionedScalar
- lambdaC_: volScalarField

+ beta() : volScalarField& {query}
- delayNeutronGroup(delayNeutronGroup&)
+ delayNeutronGroup(label, delayNeutrons&, dictionary&)
+ ~delayNeutronGroup()
+ lambda() : dimensionedScalar& {query}
+ lambdaC() : volScalarField& {query}
+ lambdaC() : volScalarField&
- operator=(delayNeutronGroup&) : void

IOdictionary

delayNeutrons

- factor0_: volScalarField
- factor1_: volScalarField
- groups_: PtrList<delayNeutronGroup>
- nuclField_: nuclearField& {readOnly}
- P_: volScalarField

- delayNeutrons(delayNeutrons&)
+ delayNeutrons(nuclearField&)
+ ~delayNeutrons()
+ factor0() : volScalarField& {query}
+ factor1() : volScalarField& {query}
+ groups() : PtrList<delayNeutronGroup>& {query}
+ mesh() : fvMesh& {query}
+ nuclField() : nuclearField& {query}
- operator=(delayNeutrons&) : void
+ P() : volScalarField& {query}
+ updateConcentrations(bool) : void
+ updateProduction(bool) : void

IOdictionary

fissionProducts

- isotopes_: PtrList<isotope>
- nuclField_: nuclearField& {readOnly}
- sigma_: volScalarField

- fissionProducts(fissionProducts&)
+ fissionProducts(nuclearField&)
+ ~fissionProducts()
+ isotopes() : PtrList<isotope>& {query}
+ mesh() : fvMesh& {query}
+ nuclField() : nuclearField& {query}
- operator=(fissionProducts&) : void
+ sigma() : volScalarField& {query}
+ updateConcentrations(bool) : void

fluxGroup

- crossSection_: crossSection& {readOnly}
- index_: label
- leakage_: volScalarField
- phi_: volScalarField

- fluxGroup(fluxGroup&)
+ fluxGroup(label, crossSection&, dictionary&)
+ ~fluxGroup()
+ leakage() : volScalarField& {query}
+ leakage() : volScalarField&
- operator=(fluxGroup&) : void
+ phi() : volScalarField& {query}
+ phi() : volScalarField&
+ scalePower(scalar) : void
+ sigma() : crossSection& {query}
+ updateLeakage() : void

isotope

- conc_: volScalarField
- lambda_: dimensionedScalar
- name_: word
- parentIndex_: label
- parentName_: word
- products_: fissionProducts& {readOnly}
- sigma_: volScalarField
- yield_: volScalarField

+ conc() : volScalarField& {query}
+ conc() : volScalarField&
+ hasParent() : bool {query}
- isotope(isotope&)
+ isotope(word&, fissionProducts&, dictionary&)
+ ~isotope()
+ lambda() : dimensionedScalar& {query}
+ name() : word& {query}
- operator=(isotope&) : void
+ parent() : label {query}
+ sigma() : volScalarField& {query}
+ yield() : volScalarField& {query}

0..*

-products_ 1

0..*

-delay_ 1

1

-crossSection_ 1

0..*

-nuclField_ 1

0..*

-nuclField_ 1

0..*

1

+groups_

0..*

+nuclearField_

1

Figure 7: The diffusionFoam Class Structure

62

fvPatchField

Type:class

extrapolatedLengthFv PatchField

- length_: scalarField
- phiName_: word
+ TypeName: int

+ clone() : tmp<fvPatchField<Type> > {query}
+ clone(Field<Type>&) : tmp<fvPatchField<Type> > {query}
+ evaluate() : void
+ extrapolatedLengthFvPatchField(fvPatch&, Field<Type>&)
+ extrapolatedLengthFvPatchField(fvPatch&, Field<Type>&, dictionary&)
+ extrapolatedLengthFvPatchField(extrapolatedLengthFvPatchField<Type>&, fvPatch&, Field<Type>&, fvPatchFieldMapper&)
+ extrapolatedLengthFvPatchField(extrapolatedLengthFvPatchField<Type>&, Field<Type>&)
+ gradientBoundaryCoeffs() : tmp<Field<Type> > {query}
+ gradientInternalCoeffs() : tmp<Field<Type> > {query}
+ length() : scalarField&
+ length() : scalarField& {query}
+ operator*=(fvPatchField<scalar>&) : void
+ operator*=(Field<scalar>&) : void
+ operator*=(scalar) : void
+ operator+=(fvPatchField<Type>&) : void
+ operator+=(Field<Type>&) : void
+ operator+=(Type&) : void
+ operator-=(fvPatchField<Type>&) : void
+ operator-=(Field<Type>&) : void
+ operator-=(Type&) : void
+ operator/=(fvPatchField<scalar>&) : void
+ operator/=(Field<scalar>&) : void
+ operator/=(scalar) : void
+ operator=(UList<Type>&) : void
+ operator=(fvPatchField<Type>&) : void
+ operator=(Type&) : void
+ snGrad() : tmp<Field<Type> > {query}
+ updateCoeffs() : void
+ valueBoundaryCoeffs(tmp<scalarField>&) : tmp<Field<Type> > {query}
+ valueInternalCoeffs(tmp<scalarField>&) : tmp<Field<Type> > {query}
+ write(Ostream&) : void {query}

Figure 8: The diffusionFoam Class Structure (continued)

Table 6: diffusionFoam Member Function and Equation Cross-References

Reference Equation Class or Namespace Member

(4.2) nuclearField::updateFissionRate

nuclearField::updateProduction

(4.11), (4.13) delayNeutrons::updateConcentrations

(4.22), (4.23), (4.24) Foam::innerIteration

(4.18), (4.19), (4.20),

(4.25), (4.26), (4.27)

delayedNeutrons::updateProduction

(4.21) Foam::transportSolve

Foam::groupSolve

(4.31) nuclearField::updateKEffective

(4.32) extrapolatedlengthFvPatchField::evaluate

extrapolatedlengthFvPatchField::valueInternalCoeffs

extrapolatedlengthFvPatchField::valueBoundaryCoeffs

(4.33) extrapolatedlengthFvPatchField::snGrad

extrapolatedlengthFvPatchField::gradientInternalCoe ffs

extrapolatedlengthFvPatchField::gradientBoundaryCoe ffs

(4.44), (4.45), (4.46), (4.48) fissionProducts::updateConcentrations

(4.49) nuclearField::updatePowerDensity

63

5.1.2 crossSections Class

The crossSections class is primarily a container class for the neutron cross-sections and

other diffusion related constants. It is invisaged that this class will ultimately include more

advanced cross-section library functionality such as the collapsing of cross-sections, etc. A

single crossSection object is defined for each broad energy group. Each crossSection

object is responsible for supplying the spatially-dependent macroscopic absorption, fission,

nu-fission, and scattering cross-sections, as well as diffusion constant, mean neutron velocity

and fission spectrum for a single broad energy group. Currently, fixed value cross-sections are

used but the structure is in place for more advanced cross-section calculations to be

implemented.

5.1.3 delayNeutrons Class

The delayNeutrons class is responsible for providing the delayed neutron production terms

for the neutron diffusion equation. These include steady-state and transient spatial prompt

neutron production factors and the delayed neutron production. The class contains one or

more delayNeutronGroup objects, representing each of the delayed neutron precursor

groups. Each precursor group object is responsible for updating its own precursor

concentration.

5.1.4 fissionProducts Class

The fissionProducts class is responsible for providing updated macroscopic absorption

cross-sections for, and calculating updated concentrations of fission products. One or more

child isotope objects are defined, each representing a single isotope. Each isotope object is

responsible for calculating its updated concentration and macroscopic neutron absorption

cross-sections. The current implementation is limited to the iodine and xenon type neutron

poisons, with only a single parent and daughter isotope. The class structure is such that

detailed decay chain calculations could potentially be carried out.

64

5.1.5 extrapolatedLengthFvPatchField Class

This class is derived from the FOAM fvPatchField class, providing the underlying code for

an extrapolated length boundary condition, identified by the keyword extrapolatedLength

in diffusionFoam. The internal operation of the class will not be discussed, however, it is

necessary to explain that each extrapolatedLength boundary condition is responsible for

updating its own extrapolated length values, given the name of a volScalarField from

which to obtain diffusion length values (extrapolatedLengthFvPatchField::phiName_).

This would, as a general rule, be the same name as the diffusion length associated with each

crossSection object (crossSection::D_), although this is not enforced in the code.

While such flexibility may seem redundant in this case, since the extrapolated length will

always be a function of diffusion length, it serves to illustrate how more complex coupling

schemes may be achieved at mesh boundaries using FOAM.

5.2 User Input

A brief description of FOAM input and output is provided in section 3.8. A graphical

representation of the structural layout of a typical diffusionFoam case is given in Figure 9.

The diffusionFoam implementation takes full advantage of the input/output libraries of

FOAM. In particular, each of the classes described in section 5.1 is assigned a unique

dictionary in the constant directory, with the same name as the class. This dictionary contains

all the necessary initialization data for the class. Consider, as an example, the following input

dictionary for the fissionProducts class.

65

isotopes
(
 Xe135
 {
 parent I135;
 lambda lambda [0 0 -1 0 0 0 0] 2.116E-5;
 yield yield_Xe135;
 sigma sigma_Xe135;
 }

 I135
 {
 parent none;
 lambda lambda [0 0 -1 0 0 0 0] 2.883E-5;
 yield yield_I135;
 sigma sigma_I135;

 }
}

Here, we can see that the decay chain of the isotopes 135Xe and 135I are defined, including

their decay constants and the names of the fission yield fraction and microscopic absorption

cross-section dictionaries for each isotope. Thus, any number of isotopes may be defined in an

easily understood and readable format.

5.3 Known Issues

For reasons discussed in section 4.4, the simple predictor-corrector arrangement proposed in

section 4.4.1.3 was implemented as an initial attempt to obtain stable multi-group solutions.

This algorithm was found to be unstable for multi-group time-dependent calculations.

Therefore the current implementation allows time-dependent calculations in one energy group

only.

66

<Case><Case>

systemsystem

constantconstant

00

11

controlDict

fvSchemes

fvSolution

points

polyMeshpolyMesh

cells

faces

boundary

crossSections

delayNeutrons

fissionProducts

nuclearField

...fields

...fields

...other time dictionaries

Calculation control
Discretization schemes specification
Solver specification

Mesh definition

Constant nuclear definitions

Time directories

Figure 9: Structural Layout of a Typical diffusionFoam Case

5.4 Closure

In this chapter, the implementation for the OpenFOAM-based diffusion solver, called

diffusionFoam, was described. During solver development, significant effort was devoted

towards ensuring that an object-oriented approach was followed. This solver is known to be

unstable for time-dependent multi-group calculations. A number of test calculations and their

results, using the diffusionFoam solver, are given in chapter 6. Chapter 6 also includes further

discussion which is based on the knowledge gained in this and previous chapters.

67

6. RESULTS AND FURTHER DISCUSSION

In order to test the diffusionFoam implementation of chapter 5, numerical solutions to a

number of test cases have been obtained using the code. The test cases have been chosen so as

to envelop the main features of the code, and numerical solutions are compared with

analytical or other numerical solutions. These comparisons are presented in this chapter.

Section 6.1 includes initial steady-state comparisons for simple one-group reactor models.

This is then extended to more advanced non-homogenous two-group reactor models in 6.2. In

section 6.3, short term and medium term dynamics are tested for the cases of step reactivity

insertion and load-following. Additional discussions around the known issues of 5.3 as well

as around questions 2, 3 and 4 of Chapter 1 are included in section 6.4 of this chapter.

6.1 Steady-State Analytical Comparisons

Analytical criticality conditions are readily available for a number of simple geometries,

including spherical, block and cylindrical reactors (Stacey 2001), for the case of fixed

uniform cross-sections. The criticality conditions are given in terms of a geometric

buckling 2
gB as follows.

221
1

BL
k a

f

+
Σ
Σ

==

ν

(6.1)

where
a

D
L

Σ
= is the diffusion length.

These analytical benchmarks formed the basis of initial tests carried out using the

diffusionFoam implementation. The geometric bucklings and flux profiles for the three simple

geometries mentioned above, as well as chosen critical dimensions for typical PWR cross

sections are given in Table 7.

68

Numerical steady-state solutions were obtained using diffusionFoam for each of these cases,

where the analytical reactor is critical (1=k). The results are summarized in Table 8. From

the results shown, it is clear that the steady-state solver is operating correctly for simple cases,

with zero flux at the boundaries. In all cases, the difference in k-effective between the

analytical and numerical solutions is sufficiently small that it can be attributed to numerical

discretization error.

Table 7: Criticality Conditions for Some Simple Bare Reactors

 Sphere Block Finite Cylinder

Geometry

ρ

a
c

b

ρ

h

Geometric Buckling 2










ρ
π

222








+






+








cba

πππ

22
405.2








+








h

π
ρ

Flux Profile

ρ
π r

r
sin

1

c

z

b

y

a

x πππ
coscoscos

h

zr
J

π
ρ

cos
405.2

0

Diffusion Length D 10 cm 10 cm 10 cm

Absorption Cross

Section aΣ

0.15 cm-1 0.15 cm-1 0.15 cm-1

Nu-fission Cross

Section fΣν

0.16 cm-1 0.16 cm-1 0.16 cm-1

Critical Dimensions 99.35 cm 200 x 150 x 177.1 cm ρ=120, h=128.43

Table 8: Summary of diffusionFoam Results for Steady-state Analytical Benchmarks

 Sphere Block Finite Cylinder

Mesh dimensions 50 radial 30 x 30 x 30 50 radial, 50 axial

k-effective 0.99999 1.00006 1.00001

Error [510×∆k] -1 +6 +1

69

6.2 Steady-State Benchmark Comparisons

6.2.1 The Dodds Benchmark

The Dodds benchmark problem (ANL-7416 1977) is a set of pure neutronic calculations for a

two-dimensional axisymmetric (r-z) reactor model. The benchmark is intended to test two-

dimensional neutron kinetics solutions, and consists of an initial steady-state eigenvalue

calculation followed by a supercritical transient with six-group delayed neutron feedback.

Relevant reactor parameters for the steady-state calculation are given in Table 9 and the

layout of the reactor is depicted in Figure 10.

Table 9: Dodds Benchmark Steady-State Parameters

Parameter Value

Number of radial meshes 18 (equally spaced)

Number of axial meshes 28 (equally spaced)

Number of broad energy groups 2

Reactor width 235.61 cm

Reactor height 524.87 cm

Boundary conditions Zero-flux

Number of material types 9

Number of material regions 16

Benchmark k-effective 0.867053

A steady-state solution to this benchmark using the TINTE code is available (Strydom 2004).

Since the underlying theory of diffusionFoam is based on the TINTE code theory, the results

are expected to match closely.

For reasons discussed in chapter 5, the time-dependent solution to this two-group problem

could not be obtained with the currently implemented predictor-corrector algorithm. The

steady-state solution was, however, calculated using diffusionFoam, using a mesh refinement

of six fine meshes per coarse mesh in both the radial and axial directions. Comparisons of

steady-state results with both the TINTE code and the benchmark reference result are given in

70

Table 10 and Figure 11. The results of TINTE and diffusionFoam compare very well. There is

an eigenvalue difference of less than 5101× between the two codes, and the flux profiles

show negligible differences.

1

2

3

2

1

6

3

4 5

7 8

4 5

9

117.80 157.1 196.3 235.6

0

37.5

75

187.5

337.4

449.9

487.4

524.9

Figure 10: Dodds Benchmark Steady-State Reactor Layout

Table 10: K-effective Comparison for the Dodds Benchmark

 Reference TINTE diffusionFoam

k-effective 0.867053 0.867433 0.867442

Difference [510×∆k] - +38 +39

71

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

r [cm]

R
el

at
iv

e
F

lu
x

TINTE z=131.2cm
TINTE z=262.5cm
FOAM z=131.2cm
FOAM z=262.5cm

(b) Fast Flux Radial Profiles

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

r [cm]
R

el
at

iv
e

F
lu

x

TINTE z=131.2cm
TINTE z=262.5cm
FOAM z=131.2cm
FOAM z=262.5cm

(d) Thermal Flux Radial Profiles

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

z [cm]

R
el

at
iv

e
F

lu
x

TINTE r=0
TINTE r=117.8cm
FOAM r=0
FOAM r=117.8cm

(a) Fast Flux Axial Profiles

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

z [cm]

R
el

at
iv

e
F

lu
x

TINTE r=0
TINTE r=117.8cm
FOAM r=0
FOAM r=117.8cm

(c) Thermal Flux Axial Profiles

Figure 11: diffusionFoam and TINTE Steady-State Flux Profile Comparisons for the Dodds Benchmark

72

6.2.2 The OECD PBMR Benchmark

The Nuclear Energy Agency, within the Organization for Economic Co-operation and

Development (OECD), has published the OECD PBMR benchmark (Reitsma et. al. 2004), in

which a set of steady-state and transient calculations for the PBMR HTR are defined. The

reactor is modeled in two-dimensional axisymmetric (r-z) geometry. A total of 190 nuclear

materials are defined in 580 nuclear calculation regions. The model layout is shown in

Figure 12. A two-group structure is defined. The benchmark defines the reactor geometry on a

structured rectangular coarse mesh, indicated by softer lines in Figure 12.

In this section, case 1 of the benchmark is considered. This is a pure neutronic steady-state

calculation using fixed cross-section sets. A model for the case was created using a mesh

refinement of four fine meshes per coarse mesh in both the radial and axial directions. The

steady-state k-effective for this model was compared with TINTE results for the same case,

using the same mesh structure. These comparisons were also done for the case of eight fine

meshes per coarse mesh. The results of these comparisons are given in Table 11.

Table 11: K-effective Comparison for the OECD PBMR Benchmark

Case Parameter TINTE diffusionFoam

Four fine meshes per
coarse mesh

K-effective 0.99821 0.99745

 Difference [510×∆k] - -76

Eight fine meshes per
coarse mesh

K-effective 0.99869 0.99803

 Difference [510×∆k] - -66

73

0 10 41 73
.6

80
.6

92
.1

10
0

11
7

13
4

15
1

16
8

18
5

19
2.

9

20
4.

5

21
1.

4

22
5

24
3.

6

26
0.

6

27
5

28
7.

5

29
2.

5

200
133 133 133 133 155 116 113 113 113 113 113 135 164 144 144 152 152 152 189 190

150
133 133 133 133 155 116 113 113 113 113 113 135 164 144 144 152 152 152 189 190

100
133 133 133 133 155 116 112 112 112 112 112 135 164 144 144 152 152 152 189 190

50
133 133 133 133 155 116 111 111 111 111 111 135 164 144 144 152 152 152 189 190

0
134 134 134 125 156 117 1 23 45 67 89 136 165 145 145 153 153 153 189 190

-50
134 134 134 125 156 117 2 24 46 68 90 136 166 145 145 153 153 153 189 190

-100
134 134 134 126 157 118 3 25 47 69 91 137 167 146 146 153 153 153 189 190

-150
134 134 134 126 157 118 4 26 48 70 92 137 168 146 146 153 153 153 189 190

-200
134 134 134 126 157 118 5 27 49 71 93 137 169 146 146 153 153 153 189 190

-250
134 134 134 127 158 119 6 28 50 72 94 138 170 147 147 153 153 153 189 190

-300
134 134 134 127 158 119 7 29 51 73 95 138 171 147 147 153 153 153 189 190

-350
134 134 134 127 158 119 8 30 52 74 96 138 172 147 147 153 153 153 189 190

-400
134 134 134 127 158 119 9 31 53 75 97 138 173 147 147 153 153 153 189 190

-450
134 134 134 128 159 120 10 32 54 76 98 139 174 148 148 153 153 153 189 190

-500
134 134 134 128 159 120 11 33 55 77 99 139 175 148 148 153 153 153 189 190

-550
134 134 134 128 159 120 12 34 56 78 100 139 176 148 148 153 153 153 189 190

-600
134 134 134 128 159 120 13 35 57 79 101 139 177 148 148 153 153 153 189 190

-650
134 134 134 129 160 121 14 36 58 80 102 140 178 149 149 153 153 153 189 190

-700
134 134 134 129 160 121 15 37 59 81 103 140 179 149 149 153 153 153 189 190

-750
134 134 134 129 160 121 16 38 60 82 104 140 180 149 149 153 153 153 189 190

-800
134 134 134 129 160 121 17 39 61 83 105 140 181 149 149 153 153 153 189 190

-850
134 134 134 130 161 122 18 40 62 84 106 141 182 150 150 153 153 153 189 190

-900
134 134 134 130 161 122 19 41 63 85 107 141 183 150 150 153 153 153 189 190

-950
134 134 134 130 161 122 20 42 64 86 108 141 184 150 150 153 153 153 189 190

-1000
134 134 134 131 162 123 21 43 65 87 109 142 185 151 151 153 153 153 189 190

-1050
134 134 134 131 162 123 22 44 66 88 110 142 186 151 151 153 153 153 189 190

-1100
132 132 132 132 163 124 114 114 114 114 114 143 187 151 151 154 154 154 189 190

-1150
132 132 132 132 163 124 115 115 115 115 115 143 188 151 151 154 154 154 189 190

-1200
132 132 132 132 163 124 115 115 115 115 115 143 188 151 151 154 154 154 189 190

-1250

Figure 12: PBMR OECD Benchmark Steady-State Reactor Layout

74

From these results it is clear that there is a difference of approximately 70 pcm between

TINTE and diffusionFoam results. Possible reasons for these differences include:

• Differences between the discretization methods employed by each solver. FOAM

employs finite-volume discretization while TINTE employs a variant of the finite-

difference discretization.

• The current diffusionFoam implementation does not support directional diffusion

constants. For this reason, non-directional diffusion constants in the void regions were

approximated, based on the specified benchmark values.

6.3 Time-Dependent Comparisons

As was discussed in section 5.3, the simple predictor-corrector solution algorithm of

section 4.4.1.3 was found to be unable to ensure solution stability for time-dependent multi-

group cases. In the absence of a block-coupled solver, no time-dependent multi-group

solutions could be obtained using the current diffusionFoam implementation. In order to

demonstrate the potential of the modern multi-physics approach to these classes of problems,

however, a number of time-dependent one-group calculations were carried out.

6.3.1 Short Term Dynamics - Reactivity Insertion

The bare sphere model of section 6.1 was modified to include delayed neutrons. The delayed

neutron parameters of Table 12 were assumed, and a mean neutron velocity v of 106 cm/s

was assumed. Calculations were then carried out for the first 10 s of reactivity insertion

events. Both positive and negative step reactivity insertions of 100 pcm and 200 pcm were

considered. Additionally, each calculation was repeated for the case of constant precursor

concentrations, so that the prompt jump could be shown without any delayed neutrons

influences. No supercritical insertion was considered because no reactivity feedback model

has currently been implemented in diffusionFoam. The results of all reactivity insertion cases

are summarized in Figure 13. The numerical results are compared with analytical prompt

jump approximation (PJA) solutions, which are derived in the next section. These analytical

75

solutions describe the initial jump and power gradient immediately after the reactivity

insertion. The analytical PJA solutions overlaid on Figure 13 therefore only indicate the

initial response of the reactor. No comparisons were made for later times.

Table 12: Delayed Neutron Parameters for Reactivity Insertion Calculations

Group

l

Decay Constant

lλ [s-1]

Fission Fraction
310×lβ †

1 3.87 0.179504

2 1.4 0.883712

3 0.311 2.809928

4 0.116 1.297952

5 0.03174 1.470552

6 0.01272 0.262352

All - 6.904

The prompt jump is clearly visible in all cases, followed by the slower response of the six

delayed neutron groups. For all cases of constant delayed neutron precursor concentrations,

the prompt jump is clearly visible and, as expected, the power remains constant after this

prompt jump. The results around the initial jump compare well with the analytical

approximations obtained in the next section. Differences are seen beyond 0.5 s because the

prompt jump approximation solution of the next section describes only the initial reactor

response.

† Values used are taken from Table 3 and Table 4 for U235.

76

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

Time [s]

R
el

at
iv

e
P

o
w

er

FOAM +200 pcm FOAM +200 pcm (const. prec.) PJA +200 pcm

FOAM +100 pcm FOAM +100 pcm (const. prec.) PJA +100 pcm

FOAM -100 pcm FOAM -100 pcm (const. prec.) PJA -100 pcm

FOAM -200 pcm FOAM -200 pcm (const. prec.) PJA -200 pcm

Figure 13: Time Plot of Relative Power for Subprompt-critical Reactivity Insertions

6.3.1.1 Analytical Comparisons

Analytical approximations of the initial power response can be obtained using the prompt

jump approximation (PJA) (Ott and Neuhold 1985). What follows is the calculation of the

expected response, based on this approximation, for the reactivity insertion cases.

The neutron generation time Λ for the model is calculated as

s
v f

6

6
1025.6

16.010

11 −×=
×

=
Σ

=Λ
ν

The simplified point kinetics equation, independent of external sources is written

∑Λ
+

Λ
−=

l
llQ

dt

dQ ζλβρ 1

77

where Q is the total reactor power and ρ in the inserted reactivity. The precursor balance

equation is written

Q
dt

d
lll

l βζλζ +−=

The prompt jump approximation (PJA) may be applied to determine the initial jump after a

step reactivity insertion.

ρβ
β
−

=








PJA
Q

Q

0

*
0 (6.2)

The rate of change of power, following the reactivity insertion and based on the point jump

approximation, may be calculated according to

*
0Q

dt

dQ

PJA ρβ
ρλ

−
=








 (6.3)

where the single group decay constant λ is calculated according to

∑=
l

llλβ
β

λ 1

For the data of Table 12, 1435.0 −= sλ .

Solutions for the prompt jump and initial rate of change of power following the prompt jump,

Equations (6.2) and (6.3), are given in Table 13. These initial power curves are superimposed

on Figure 13 for comparison with the diffusionFoam results.

Table 13: Point Jump Approximation Applied to the Reactivity Insertion Cases

Inserted
Reactivity

ρ

Prompt Jump

PJA
Q

Q









0

*
0

Initial Power Slope

PJAdt

dQ









+200 pcm 1.408 0.25

+100 pcm 1.169 0.0862

-100 pcm 0.873 -0.0481

-200 pcm 0.775 -0.0758

78

6.3.2 Medium Term Dynamics – Load Follow

The OECD PBMR benchmark model of section 6.2.2 was collapsed to a single energy group

model for the purposes of running transients using diffusionFoam. Case 4a of the OECD

PBMR benchmark (Reitsma et. al. 2004) was run using this single group model. In this case,

the Xe135 behaviour is modelled for a typical 100%-40%-100% load follow. The reactor,

initially at a steady-state power of 400 MW (100%), is ramped down to 160 MW (40%). After

three hours of operation at this level, the reactor is then ramped back to full power. The

control rods are kept at a constant position for the duration of the transient and the global

reactivity is monitored. The benchmark calculation includes temperature feedback. This

feedback was not modelled in diffusionFoam.

At each time-interval in the calculation, the k-effective was updated according to

equation (4.31) and, based on this, an effective global reactivity was calculated. The time

behaviour of global reactivity, as calculated using diffusionFoam, is shown in Figure 14,

compared with the reference TINTE solution for this case.

The time-scales of the reactivity response compare well, i.e. the maximum reactivity occurs

6 h after the return to full power in both cases. There are significant differences (150 pcm) in

the magnitudes calculated by diffusionFoam and TINTE. These can be attributed to modelling

differences. The diffusionFoam solution was obtained by assuming a step change in reactor

power, rather than the six minute ramp specified in the benchmark. No temperature feedback

was modelled. A single energy group was assumed for the diffusionFoam calculation, which

was obtained by collapsing from the two-group steady-state solution of section 6.2.2. There

are also potentially differences in the 135Xe and 135I yields because TINTE does not allow

custom values to be specified.

79

-1500

-1250

-1000

-750

-500

-250

0

250

500

0 5 10 15 20 25 30

Time [h]

R
ea

ct
iv

it
y

[p
cm

]

FOAM

TINTE

Figure 14: Time Plot of Global Reactivity for Load Follow Transients

6.4 Further Discussion

The results of sections 6.1 through 6.3 have shown that the diffusionFoam implementation,

although still in an early stage of development is capable of solving a number of general

reactor analysis problems. It is clear from this that the FOAM toolkit can successfully be

applied to the solution of the spatial- and time-dependent neutron diffusion equation. In this

section, we now turn towards answering questions 2, 3 and 4 of section 1.1, which relate to

the advantages provided by a multi-physics toolkits such as FOAM and to implementing more

advanced functionality in the toolkit. Also included in this section are discussions around

particular issues which were encountered during the development of diffusionFoam.

6.4.1 Theoretical Modeling

Chapter 4 includes extensive derivations and descriptions of the necessary equations and

algorithms for a FOAM-based multi-group diffusion solver, based on the TINTE code. In

almost all cases, there is no significant difference from the TINTE equations. Any differences

80

have resulted from the multi-group assumption used, whereas TINTE uses a two-group

assumption.

Of importance is that no expressions for modeling the spatial discretization were necessary.

FOAM is responsible for handling the basic finite-volume discretization. This is quite an

advantage. If one considers the TINTE theoretical description (Clifford 2007), a substantial

portion of this is devoted to the spatial discretization and the matrix solver based on this

discretization. It is clear from this that an object-oriented framework allows the developer to

approach the problem from a higher level than does traditional code development.

Further, if the same approach is applied to the time-discretization of the delayed neutrons and

saturation fission products, these too may also be approached from a higher level. In these

cases it will, of course, be necessary to introduce suitable higher order time-discretization

schemes as options in FOAM. This will not necessarily simplify the theoretical description

but it will separate the task of implementing a higher order time-discretization scheme from

that of implementing the global solution algorithm, i.e. a first-order assumption may initially

be made and therefore the overall development of the solver is not held back until such time

as this higher-order scheme is fully implemented and tested. The theoretical descriptions of

some higher order time discretization schemes are available (Ferziger and Peric 2001), and

have been successfully implemented in other finite-volume codes (Star-CD 2007). The

FOAM implementation of typical higher order time differencing schemes such as the GAKIN

and θ methods (Stacey 2001), used in reactor analysis, should be relatively straightforward

tasks.

6.4.2 Block Coupled Solutions

For reasons discussed previously, the coupling of the group diffusion equations requires an

implicit coupling. This requirement has a number of implications when considering

development on any framework. This discussion is not limited to multi-physics toolkits alone;

these considerations must be taken into account in any new solver.

81

The multi-group diffusion equations represent a block-point implicit set of PDEs, i.e. the

group fluxes depend on each other in the same computational point but each group flux

depends only on the neighbouring value of the same energy group. We therefore have a block

matrix with many dense GG × matrices along the diagonal, and spatial coupling vectors

scattered in the lower and upper matrices, as depicted in Figure 15.

Figure 15: Typical Block Matrix Layout for a Block-Point Implicit set of PDEs

By structuring the matrix in this manner, matrix preconditioning remains effective. In the

context of the FOAM and similar frameworks, however, the construction and solution of this

block matrix requires additional effort. In particular, one must look at the method of

parallelization employed by the toolkit. FOAM uses domain decomposition for parallelization

of the solver and, in this case, it will be necessary to invest additional effort into extending

this parallelization to block solutions.

Implicit equation coupling and block matrices are currently areas of development in FOAM

(Jasak 2007). The coupled solution of vector and tensor equations is currently supported, and

block-point implicit coupling is likely to be available in the future.

6.4.3 Higher Order Transport Methods

The diffusionFoam implementation is based on the diffusion approximation. Up to now the

more advanced neutron transport methods or their applicability to general multi-physics

toolkits has yet to be discussed. In exploring the potential for the deterministic solution of the

neutron transport equation using multi-physics toolkits we will restrict ourselves to the

82

discrete-ordinates (S-N) methods. Discussions around the spherical harmonics methods are

excluded because of their relative mathematical complexity, but the principles discussed still

apply. The discrete-ordinates methods essentially discretize the angular domain (direction of

neutron flow) into a number of fixed directions or ordinates. This is not dissimilar to the

multiple energy group approach; the number of coupled equations now becomes multiplied by

the number of discrete ordinates. A simplified representation of the steady-state discrete-

ordinates equation is given below (Stacey 2001).

GgKkSw gk

G

g

K

k
gkk

gg
sgkgtgkk ,,1,,,1,,

1' 1'
',''

'
,,, …… ==+=+∇• ∑ ∑

= =

→ ψσψσψΩ

where

kΩ is the kth ordinate unit vector

gk ,ψ is the angular flux for the kth ordinate and gth energy group

gt ,σ , gg
s

→'σ are the gth energy group microscopic total and in-scattering cross-sections

kw is the kth ordinate quadrature weight describing the between ordinate scattering

dependency

gkS , is the source term including fission and fixed sources.

In the general neutron transport equation, the diffusion term is replaced by a streaming

operator ()t,,rΩΩ ψ∇• . The angular domain is discretized into discrete values kΩ , chosen

such that they correspond with the angular fluxes kψ . The streaming operator is written as

()tkk ,rΩ ψ∇• . The operator is now in a form suitable for applying any of the finite-

difference, finite-volume, finite-element, etc. formulations. FOAM does not currently include

this particular operator, however the implementation of this operator will be a relatively

straightforward task after a suitable finite-volume formulation is derived.

Methods are also required to simplify the scattering integral in the transport equation. A

common approach is to approximate the scattering source using Legendre polynomials

(Stacey 2001). Using this approach, the integral reduces to a sum involving explicit

83

coefficients (quadrature weights kw). No special treatment is required for these terms when

applying the finite-volume or other methodologies.

It is clear that, provided a suitable discretized formulation for the streaming term can be

obtained, the discrete-ordinates method is readily applicable to any general multi-physics

toolkit.

6.4.4 Higher Order Spatial Discretization Schemes

The relatively large computational requirements of deterministic reactor analysis have led

researchers to study methods of improving the computational accuracy on coarse meshes.

This has led to the development of a number of higher-order spatial discretization schemes.

Of these, the nodal (Wagner 1979) (Lawrence and Dorning 1979) (Shober et. al. 1986) (Hutt

and Knight 1990) (Turinsky et. al. 1994) and finite-element methods (Kang and Hansen 1973)

(Ciarlet 1978) (Lautard 1994) (Van Criekingen 2007) are in common use. Sutton and Aviles

provide a good general overview of the higher order methods available for solving the time-

dependent group diffusion equation (Sutton and Aviles 1996).

The nodal methods are ideally suited to lattice-type calculations where representative cross-

sections for each large node are obtained using an assembly calculation. In this respect they

are used particularly in light-water reactor analysis, where a node can be defined for each

rectangular fuel assembly. The nodal methods have generally been restricted to structured

rectangular meshes in the past. Recent development has been made into hexagonal nodal

methods for the cases of hexagonal lattice structures such as those found in VVER reactors

and block HTRs (Jin and Chang 1998) (Bangyang and Zhongsheng 2006). This development

is, however, for the case of structured orthogonal meshes.

For reactor analysis calculations using unstructured meshes, the finite-element formulation

has more commonly been used (Lucas et. al. 2004). This is not to say that the finite-volume

method is not suited to reactor analysis problems. Rather, if one takes the point of view that

the nodal, finite-volume and finite-element methods can be written in mathematically

84

equivalent forms, it is then possible to represent the finite-element and nodal methods using a

higher order finite-volume discretization. A number of examples of this generalized point of

view are available. For example, Grossman and Hennart consider the finite-element

formulation to be a general discretization technique, and as such have successfully applied it

to the nodal methods (Grossman and Hennart 2007). Similarly, Chavent combined the

advantages of the finite-volume and finite-element methods into a single numerical procedure,

by using mixed-hybrid finite-element and Godunov’s methods (Chavent et. al. 1997).

Numerous other studies have also been carried out into higher order finite-volume methods

and their relation to finite element methods (Baranger et. al. 1996) (Aboubacar and Webster

2000).

These studies are generally not aimed at reactor analysis problems, however, and research will

most likely be necessary to derive these higher order finite-volume discretizations for

implementation in a finite-volume toolkit such as FOAM. FOAM provides many of the

features necessary for implementing such higher-order discretization schemes. The FOAM

toolkit allows fields of values to be defined at cell-centers, mesh faces and at mesh vertices.

The stressFemFoam application is an example of a finite-element implementation in FOAM.

6.4.5 Other Numerical Issues

Apart from the diffusion equation coupling problems discussed in previous sections,

numerous other numerical problems were encountered during testing and execution of

diffusionFoam.

� Steady-state convergence of the more complex models is slow. The TINTE code

system generally provides a converged steady-state solution with 50 iterations. The

diffusionFoam code currently requires significantly more (several hundred) iterations

than this for convergence. This is largely because the maximum pseudo-transient time

interval is limited by solution stability in diffusionFoam. More attention should be

paid towards optimizing the numerics of the steady-state solution. In particular, the

85

pseudo-transient algorithm used by the TINTE code could be replaced with the a more

traditional fixed-source iteration method.

� The convergence of the inner iteration during time-dependent calculations requires

optimization. During the diffusion equation solution FOAM, by default, adds a portion

of the prompt neutron production term as an explicit source to ensure stability during

the matrix inversion. A properly converged solution therefore requires iteration

outside the matrix solution. This is done in the inner iteration loop of diffusionFoam.

A more advanced method to linearise the prompt neutron production could potentially

improve the rate of convergence.

� The time-dependent and pseudo-transient steady-state calculations were carried out

based on user-specified time interval values. The introduction of a time interval

controller, which optimizes the time intervals based on the reactor period and other

parameters, will assist in reducing the number of time intervals required for a given

calculation.

The above problems are not specific to FOAM or any other multi-physics toolkits. It is likely

that any new implementation, on any platform, will require significant effort to optimize the

numerics of the problem.

6.5 Closure

In this chapter, numerical solutions to a number of test cases were obtained using the

diffusionFoam code. The test cases were chosen so as to test the main features of the code,

from simple steady-state solutions to more complex time-dependent solutions involving short

and medium term dynamics. The numerical solutions were compared to analytical or other

numerical solutions. In all cases the solver performed adequately. Based on this we can

conclude that the FOAM implementation of a time-dependent diffusion solver was successful.

The main numerical issues surrounding the diffusionFoam code were then discussed. The

potential for and issues surrounding the implementation of a block solver in FOAM were

86

discussed, as was the potential for implementing more advanced transport calculations and

higher order discretization schemes. In these discussions the potential for applying multi-

physics toolkits to other, more advanced, classes of reactor analysis problems is shown. In

chapter 7 the main conclusions from this and previous chapters are summarized.

87

7. CONCLUSIONS

The basic implementation of a time-dependent diffusion solver was created using the FOAM

toolkit. This new implementation, called diffusionFoam, includes models for delayed

neutrons as well as fission product poisoning by saturation fission products such as 135Xe.

Fixed value cross-sections were assumed. This solver was shown to function well for two-

group steady-state calculations and one-group time-dependent calculations.

In the development of this solver, a subset of the theoretical basis for the TINTE code was

rederived in such a way as to be compatible with the FOAM framework. Based on this

theoretical description, a data structure was defined and a number of container classes were

then created. The resulting implementation is an example of an object-oriented, multi-physics

approach to reactor analysis solver development. While there is still scope for improvement

and outstanding issues, the key benefits and disadvantages of such an approach have been

explored to some depth.

The FOAM toolkit has shown great potential for the solution of general reactor analysis

problems. The initial literature survey showed FOAM to be a general numerical toolkit, which

had the potential for solving reactor analysis classes of problems. Further research has shown,

rather, that the greatest benefit of using such a framework is through the software design

approach applied. When creating a solver using such a framework, the developer inherently

seeks to modularize the code. FOAM includes a fixed number of container types; scalar ,

dimensionedScalar , Field of scalar values and a Field of dimensionedScalar values.

Inherent to each of these objects is the functionality to read and write data to/from file, for

mathematical expression evaluation and full error handling. The code developer is therefore

responsible for identifying how these variables interact with each other, and structuring them

so as to take advantage of these interactions. It is clear that this object-oriented approach to

coding does provide advantages in terms of the development and maintenance of complex

reactor analysis codes.

88

The theoretical description of chapter 4 and further discussions in section 6.4.1 have shown

that the approach followed in deriving suitable equations for the FOAM framework is

virtually indistinguishable from the approach followed in the case of the TINTE code. A

distinguishing feature of the object-oriented approach is that physical equation derivations are

carried out independently from those for the spatial and time discretization schemes. Thus we

can see that in order to take advantage of the object-oriented structure of the framework, it is

necessary to modularize the theoretical basis.

A number of test calculations were carried out to validate the accuracy of the diffusionFoam

solver.

� Steady-state eigenvalue comparisons were made for three simple bare reactors, namely

spherical, block and finite-cylinder reactors, in section 6.1. The numerical results

compared very well with the analytical criticality conditions for these simple reactor

shapes.

� A steady-state eigenvalue comparison was made for the Dodds benchmark problem, in

section 6.2.1. Here, both the calculated k-effective and flux profiles were shown to

closely match the TINTE results for this benchmark. The k-effective also compared

well with the reference benchmark value (39 pcm difference).

� A steady-state eigenvalue comparison was made for case 1 of the OECD PBMR

benchmark in section 6.2.2. Here small k-effective differences (70 pcm) were seen

between diffusionFoam and TINTE solutions.

� Short term dynamics comparisons were made by modeling a number of simple

reactivity insertion transients based on the one-group bare sphere reactor model of

section 6.1. Positive and negative step reactivity insertions of 100 and 200 pcm were

considered. The initial power response of the reactor compared well with analytical

solutions, which were based on the point jump approximation.

� The medium term reactor dynamics was tested for a simple load follow calculation.

The two energy group model of section 6.2.2 was collapsed to a single group model.

Based on this new model, a 100%-40%-100% load follow (case 4a of the OECD

89

PBMR benchmark) was calculated using diffusionFoam. The results were considered

adequate in comparison with TINTE results for the same calculation.

Based on these tests, the diffusionFoam implementation has been shown to perform

satisfactorily, although a number of issues do need to be addressed. The structure is currently

in place for multi-group time-dependent solutions, but the fully time-dependent solution for

multiple energy groups will require the resolution of several numerical issues. These same

issues would need to be resolved for the implementation of a more advanced neutron transport

solver.

Of particular importance would be the need for a block-point implicit solver, as was discussed

in section 6.4.2. The fact that FOAM currently excludes such a coupled solver may initially

seem to be a disadvantage, but one must consider that an efficient block solver would need to

be created or sourced for any new implementation, regardless of the underlying framework.

The lack of this functionality in FOAM should therefore not lead to the conclusion that an

object-oriented multi-physics approach is not suited to reactor analysis applications. Rather,

one should note that such functionality will need to be implemented as it would for any other

framework. For this implementation, an object-oriented design provides a number of

advantages. In particular, the implementation of new functionality in an object-oriented

framework will have little to no impact on the already existing functionality. Additional

features may be developed in parallel without the need to continuously ensure that the final

code is synchronized, and that the new features are compatible with each other.

The potential for more advanced transport solutions was discussed in section 6.4.3. Here it

was determined that such solutions are feasible, provided that equivalent finite-volume

expressions for the spatial coupling can be derived. In section 6.4.4, the potential for

implementing higher order spatial discretization schemes was discussed. This, again, is

dependent on the derivation of an equivalent finite-volume representation for such schemes.

90

From the discussions and conclusions above, the objectives stated in section 1.1 have been

met. It has been shown that a modern object-oriented multi-physics toolkit can effectively be

applied to the solution of spatial reactor dynamics problems, and the potential exists for their

application to other classes of reactor analysis problems.

7.1 Future Work

It is proposed that certain additional research be carried out to further investigate a number of

topics.

� Existing block solvers used in reactor analysis, as well as those specialized block

solvers already implemented in FOAM should be investigated further. The aim of

such an investigation would be to fully block couple the diffusion equation solution in

the current diffusionFoam implementation in a manner consistent with the existing

structure of the toolkit.

� There is significant scope for the development of higher-order discretization schemes

using the finite-volume approach. Developments in both time and spatial

discretization schemes should be considered. Such schemes would provide advantages

for any number of classes of engineering problems in addition to reactor analysis

problems.

� A finite-volume implementation of the neutron transport equation, specifically using

the discrete-ordinates method, would serve to illustrate the flexibility of the

methodology. Such an illustration would further assist in breaking down the existing

barriers between the reactor analysis classes of problems and other classes of

engineering problems. Integral to this research would be the derivation of the

equivalent streaming operator and required boundary conditions for the neutron

transport equation using the finite-volume approach.

� The extension of the current diffusionFoam implementation to include the feedback

effects of temperature and coolant density could potentially serve to illustrate the

91

primary advantages of utilizing multi-physics frameworks. Such an extension would

require the close coupling of neutronic and thermal-hydraulic fields. As discussed in

the introductory sections of this text, substantial research is currently directed towards

the topic of close coupling in reactor analysis. Such a coupling would contribute

valuable knowledge towards this topic.

� The storage, retrieval and processing of raw nuclear data, based on libraries such as

the ENDF/B libraries, is a topic which requires substantial attention in the future. In

particular, research into efficient and optimal storage, retrieval and processing of raw

nuclear data using object-based data formats such as HDF5 and the FOAM file format

is recommended. Such storage formats are in line with the current object-oriented

approach to code development.

92

8. REFERENCES

ANL-7416 1977, "Benchmark Problem Book", ANL-7416 Suppl. 2, Argonne Code Centre,
Argonne National Laboratory

Aboubacar, M. and Webster, M.F. 2000, "Development of an optimal hybrid finite
volume/element method for viscoelastic flows", Int. J. Numer. Meth. Fluids, John Wiley
& Sons

Ansys CFX 2007, "Ansys CFX", Ansys Inc., [Online]. Available from:
<http://www.ansys.com/products/cfx.asp> [Accessed September 2007]

Ansys MP 2007, "Ansys Multiphysics 11.0", Ansys Inc., [Online]. Available from:
<http://www.ansys.com/products/multiphysics.asp> [Accessed September 2007]

Bangyang, X. and Zhongsheng, X. 2006, "Flux expansion nodal method for solving
multigroup neutron diffusion equations in hexagonal-z geometry", Annals of Nuclear
Energy, Volume 33, Issue 4, pp. 370-376

Baranger, J., Maitre, J. and Oudin, F. 1996, "Connection between finite volume and mixed
finite element methods", Mathematical Modelling and Numerical Analysis, Vol. 30,
Issue 4, pp 445-465

Brainerd, W. S., Goldberg, C. H. and Adams, J. C. 1996, "Programmer's Guide to FORTRAN
90", Springer Verlag

Burns, G., Daoud, R. and Vaigl, J. 1994, "LAM: An Open Cluster Environment for MPI",
Proceedings of the Supercomputing Symposium, pp. 379-386

CFD-ACE+ 2007, "CFD-ACE+", CFD Research Corporation, [Online]. Available from:
<http://www.cfdrc.com/serv_prod/cfd_multiphysics/software/ace/> [Accessed
September 2007]

CFD-FASTRAN 2007, "CFD-FASTRAN", CFD Research Corporation, [Online]. Available
from: <http://www.cfdrc.com/serv_prod/cfd_multiphysics/software/fastran/> [Accessed
September 2007]

Chadwick, M.B., Oblozinsky, P. and Herman, M. et al. 2006, "ENDF/B-VII.0: Next
Generation Evaluated Nuclear Data Library for Nuclear Science and Technology",
Nuclear Data Sheets, Volume 107, pp. 2931-3060

Chavent, G., Jaffré, J. and Roberts, J.E. 1997, "Generalized cell-centered finite volume
methods: application to two phase flow in porous media", Computational Science for
the 21st century, Tours (France), John Wiley & Sons

Ciarlet, P.G. 1978, "The finite element method for elliptic problems", North-Holland,
Amsterdam

93

Clifford, I.D. 2007, "TINTE Nuclear Calculation Theory Description Report", IMAN
052322/A, PBMR (Pty.) Ltd.

Edenius, M. and Forssen, B. 1989, "CASMO-3, A Fuel Assembly Burnup Program, User's
Manual", STUDSVIK/NFA-89/3, Studsvik Energiteknik AB

Ferziger, J.H. and Peric, M. 2001, "Computational Methods for Fluid Dynamics", 3rd
Revision, ISBN 3540420746, Springer-Verlag

Filippone, S., Colajanni, M. and Pascucci, D. 1999, "An object-oriented environment for
sparse parallel computation on adaptive grids", Proceedings of the 13th International
Parallel Processing Symposium

Fletcher, C.A.J. 1990, "Computational Techniques for Fluid Dynamics", Volume I, Second
Edition, Springer-Verlag

Fluent 2007, "Fluent 6.3", Fluent Inc., [Online]. Available from:
<http://www.fluent.com/software/fluent/index.htm> [Accessed September 2007]

Gerwin, H. 1987, "The Two-Dimensional Reactor Dynamics Programme TINTE, Part 1:
Basic Principles and Methods of Solution", Forschungzentrum (FZ) Juelich, ISSN
0366-0885

Gerwin, H., Scherer, W. and Teuchert, E. 1989, "The TINTE modular code system for
computational simulation of transient processes in the primary circuit of a pebble-bed
high-temperature gas-cooled reactor", Nuclear Science and Engineering, Vol. 103:3, pp.
302-312

Grossman, L.M. and Hennart, J. 2007, "Nodal diffusion methods for space-time neutron
kinetics", Progress in Nuclear Energy, Vol. 49, Issue 3

HDF5 2007, "Introduction to HDF5 Release 1.6.6", The HDF Group, The National Center for
Supercomputing Applications, [Online]. Available from:
<http://hdf.ncsa.uiuc.edu/HDF5> [Accessed October 2007]

Hutt, P.K. and Knight, M.P. 1990, "The Development of a Transient Nodal Flux Solution in
the PANTHER Code", Nuclear Electric (U.K.) report TD/FCB/MEM/3018

Ivanov, K.N. 2007, "Progress and challenges in the development and qualification of multi-
Level multi-physics coupled methodologies for reactor analysis", International Congress
on Advances in Nuclear Power Plants (ICAPP)

Jasak, H. 1996, "Error Analysis and Estimation for the Finite Volume Method with
Applications to Fluid Flows", PhD Thesis, Imperial College, University of London

Jasak, H. 2006, "Multi-physics Simulations in Continuum Mechanics", 5th International
Congress of Croatian Society of Mechanics

94

Jasak, H. 2007, "New Developments in OpenFOAM", Wikki Ltd. (United Kingdom), FSB,
University of Zagreb (Croatia), [Online]. Available from:
<http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/slides/PolyMilano_14Feb2007.pdf>
[Accessed November 2007]

Jin, Y.C. and Chang, H.K 1998, "Higher order polynomial expansion nodal method for
hexagonal core neutronics analysis", Annals of Nuclear Energy, Volume 25, Issue 13,
pp 1021-1031

Joo, H. G., Barber, D., Jiang, G. and Downar, T. J. 1998, "PARCS, A Multi-Dimensional
Two-Group Reactor Kinetics Code Based on the Nonlinear Analytic Nodal Method",
PU/NE-98-26, Purdue University

Kang, C.M. and Hansen, K.F. 1973, "Finite Element Methods for Reactor Analysis", Nucl.
Sci. Engineering, 51

Kruger, J.H. 2004, "Object-oriented software development applied to adaptive resolution
control in two-fluid models", North-West University

Lautard, J. 1994, "Minos : a nodal method; approximation by mixed dual finite elements in
the Cronos code", CEA-N - 2763, Commissariat à l'énergie atomique

Lawrence, R.D. and Dorning, J.J 1979, "New Coarse-Mesh Diffusion and Transport Theory
Methods for the Efficient Numerical Calculation of Multidimensional Reactor Power
Distributions", in Proc. OECD/NEACRP Specialists' Mtg. Calculation of Three-
Dimensional Rating Distributions in Operating Reactors, OECD

Lethbridge, P. 2004/2005, "Multi-physics Analysis", The Industrial Physicist, Dec 2004/Jan
2005

Lucas, D.S., Gougar, H.D., Roth, P.A, Wareing, T., Failla, G., McGhee, J. and Barnett, A.
2004, "Applications of the 3-D Deterministic Transport Attila® for Core Safety
Analysis", Americas Nuclear Energy Symposium (ANES)

Meyer, B. 1988, "Object-oriented Software Construction", Prentice-Hall

Oden, J.T., Belytschko, T., Babuska, I. and Hughes, T.J.R. 2002, "Research directions in
computational mechanics", Elsevier Science B.V.

OpenFOAM PG 2005, "OpenFOAM Programmer's Guide v1.2", OpenCFD Ltd., [Online].
Available from: <http://www.opencfd.co.uk/openfoam/index.html> [Accessed June
2007]

OpenFOAM UG 2005, "OpenFOAM User's Guide v1.2", OpenCFD Ltd., [Online]. Available
from: <http://www.opencfd.co.uk/openfoam/index.html> [Accessed June 2007]

Ott, K.O. and Neuhold, R.J. 1985, "Introductory Nuclear Reactor Dynamics", American
Nuclear Society

95

Peric, M. 1985, "A finite volume method for the prediction of three-dimensional fluid flow in
complex ducts", University of London

Ragusa, J. 2006, "Overview of Reactor Core Neutron Transport Codes", Texas A&M DOE-
NPRCAFC Meeting

Reitsma, F., Strydom, G., de Haas, J.B.M, Ivanov, K., Tyobeka, B., Mphahlele, R., Downar,
T.J., Seker, V., Gougar, H.D., Da Cruz, D.F. and Sikik, U.E. 2004, "The PBMR steady-
state and coupled kinetics core thermal-hydraulics benchmark test problems",
Proceedings of the Conference on High Temperature Reactors, Beijing, China,
September 22-24

Rumbaugh, J.R., Blaha, M.R., Lorensen, W., Eddy, F. and Premerlani, W. 1991, "Object-
Oriented Modeling and Design", Prentice-Hall

Shober, R.A., Simms, R.C. and Henry, A.F. 1986, "The Nodal Methods for Solving Time
Dependent Group Diffusion Equations", IIMAS-UNAM

Smith, K. 2003, "Reactor core methods", Mathematics and Computation (M&C) Topical
Meeting

Stacey, W.M. 2001, "Nuclear Reactor Physics", John Wiley & Sons Inc.

Star-CD 2007, "Star-CD v4", CD-Adapco, [Online]. Available from: <http://www.cd-
adapco.com/products/STAR-CD/index.html> [Accessed September 2007]

Strydom, G. 2004, "TINTE V&V: Modelling of the Dodds Neutronics Benchmark",
T000120/A, PBMR Pty. Ltd.

Sutton, T.M. and Aviles, B.N. 1996, "Diffusion Theory Methods for Spatial Kinetics
Calculations", Progress in Nuclear Energy, Vol. 30, No. 2, pp. 119-182

Turinsky, P.J., Al-Chalabi, R.M.K., Engrand, P., Sarsour, H.N., Faure, F.X. and Guo, W
1994, "NESTLE: A Few Group Neutron Diffusion Equation Solver Utilizing the Nodal
Expansion Method (NEM) for Eigenvalue, Adjoint, and Fixed-Source Steady-State and
Transient Problems", EGG_NRE-11406

U.S. National Committee on Theoretical and Applied Mechanics (NCTAM), Manufacturing
Studies Board, Commission of Engineering and Technical Systems and National
Research Council 1991, "Research directions in computational mechanics", National
Academy of Sciences

Van Criekingen, S. 2007, "A 2-D/3-D cartesian geometry non-conforming spherical harmonic
neutron transport solver", Annals of Nuclear Energy, Vol. 34, Issue 3, pp 177-187

Versteeg, H.K. and Malalasekera, W. 1995, "An introduction to computational fluid
dynamics: The finite volume method", Second Edition, Prentice Hall

96

Wagner, M.R. 1979, "A Nodal Discrete Ordinates Method for the Numerical Solution of the
Multidimensional Transport Equation", in Proc. Topl. Mtg. Comp. Meth. in Nucl. Eng.,
Williamsburg, VA, Vol. 2, American Nuclear Society

Waterman, P.J. 2004, "Moving up to multiphysics", Desktop Engineering Magazine, October
2004

Weller, H.G., Tabora, G., Jasak, H. and Fureby, C. 1998, "A Tensorial Approach to
Computational Continuum Mechanics using Object-Oriented Techniques", American
Institute of Physics

