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Symbols and Abbreviations

Au matrix in the momentum equation

Ap matrix in the pressure equation

aN off-diagonal term of matrixAu

aP diagonal term of matrixAu

b vector in the pressure equation

H −∑
Nf

aNUN + src(U)

n f normal vector of a cell face

Nf number of faces in a cell

p pressure

pf pressure on a cell face

u velocityx-component

U velocity vector

U f velocity vector on a cell face

U f ,HS velocity interpolated using some other than the upwind scheme

U f ,UW velocity using the upwind scheme

U f ,∆ U f ,HS−U f ,UW

UN velocity vector in a neighboring cells center

UP velocity vector in a cell center

U⋆ H
aP

Sf surface area of a cell face

src vsource vector in the momentum equation

∆t increment of time; time step

u velocityx-component

v velocityy-component

w velocityz-component

VP volume of a cell around point P

x x-coordinate

y y-coordinate

z z-coordinate



αU relaxation factor of the momentum equation

αp relaxation factor of pressure

φ volume flux

φ f volume flux on a cell face

φcorr correction term ofφ⋆

φ⋆
(

U⋆
f ·n f

)

Sf +φcorr

ν kinematic viscosity

CFD Computational Fluid Dynamics



1 Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD) is an important tool in avariety of fields such as
aeronautical engineering and turbomachinery as well as ship- and car design. The de-
velopment of computer technology and numerical methods have made it possible to run
simulations on regular PC’s and CFD is increasingly employed as a design tool in engi-
neering. To increase the feasibility of preliminary designwith CFD, effective methods of
running transient viscous flow computations are needed. Knowledge of the characteristics
of existing solution methods gives a better starting point for selecting the most effective
way of running a computation and thus save time and costs.

An open source CFD code opens the way for customizing and automating computations in
a versatile manner. Being able to automatically vary parameters makes comparing cases
with slight differences fast and effective. For example, the shape of an airplane, or of a
part of it, could be optimized by running computations with slightly different shapes and
comparing the results.

Indeed, at the present state of CFD all from grid generation to post-processing can be
defined in advance so that no computer-human interaction is needed after the computation
has been started. This is the case in this work, too. However,there is still much to be
developed in the field since the automation of computations still imposes limitations. The
subject is currently under research [1].

1.2 Objective

The goal of this work is to compare two different pressure based solution algorithms for
transient flow with viscous effects included, one with PISO-[2] and one with SIMPLE-
pressure correction algorithm [3]. This is done using an open source CFD library, Open-
FOAM [4]. The solvers used aretransientSimpleFoamand icoFoam. One case is com-
puted with the PISO-basedicoFoamand eight cases with the SIMPLE-basedtransientSim-
pleFoam. The PISO-based results are used as reference and the SIMPLE-based results are
compared against them.

At the end of this work there will be a discussion of flow features that affect the applica-
bility of the two solution methods. Some general guidelineson how to choose the more
adequate solution method will be outlined.

1.3 Outline

The case studied is called the Taylor-Green vortex. It is a two-dimensional decaying vor-
tex in a square domain. The case is transient and there is an analytical solution for it. It
has been used for testing accuracy of numerical methods. Figure (1) shows the velocity
magnitude and pressure fields according to the analytical result used in this work as a
reference.

The solvers are run with help of Python-scripting. Reference [1] contains a script that
handles the whole flow case. It runs theicoFoamsolver in OpenFOAM and changes the
mesh-density and divergence schemes. In addition to running the case, the script also

1
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Figure 1 Velocity and Pressure Fields According to the Analytical Solution.

handles the pre- and post-processing of the case.
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2 Flow Solvers

In this chapter, the governing equations of viscous transient flow will be presented. The
equations form a set of unlinear partial differential equations.

To enable solving the set of equations with a computer, a discrete form of the equations
needs to be presented. The discretizing treatments for different terms in the equations will
be presented separately. The treatments will include the linearization of the convection
term as well as the formulation of the transient and frictionterms. Also a way to utilize the
mass conservation law along with the momentum conservationlaw, the pressure equation,
will be derived.

At the end of this chapter, the two computer algorithms that are used for solving the
equations in this work, will be presented in detail. Their characteristics will be discussed
and compared against one another.

2.1 Theoretical Background

A time-dependent incompressible laminar flow is governed bythe Navier-Stokes equa-
tions and mass conservation, i.e. continuity, equation [6].

∇ ·U = 0 (1)
∂U
∂t

+∇ · (UU)−∇ · (ν∇U) =−∇p (2)

There are two main difficulties in these equations:

1) The convection term∇ · (UU) is unlinear because velocity is multiplied by itself and

2) the equations are coupled inU andp.

The first problem, unlinearity, will be handled by introducing a new flux variable [5]

φ f = U f ·nSf , (3)

whereU f is velocity interpolated onto a cell face,n is the unit normal vector of the cell
face andSf the area of the cell surface The point is that the fluxφ will be calculated
using known velocities and thus the convection term will only contain a known scalar
variable and one unknown term, the velocity being solved [6]. This treatment linearizes
the convection term. For the linearized form, see section (2.2.3)

The fact that the transporting part of the convection term,φ, is calculated using known
velocities means that information is lagged. If the error caused by the lagged information
can not be neglected, an iterative solution method is needed. In that case theknown
values needed to calculateφ can be taken from the previous iteration round. Until the
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velocity field no more changes from one iteration round to another, the convection term
does not correspond to the true convection term, but after convergence the lagging is no
more significant [6].

Because of the pressure-velocity coupling, the momentum equation can not be solved
without an existing pressure field. Since the pressure field is, in general, not known,
an initial pressure field needs to be estimated. However, if the estimate is not the true
pressure field, the velocity solution from the momentum equation does not fulfill the
continuity requirement [3].

This problem is dealt with by deriving a pressure equation. The momentum equation is
manipulated so that new velocities are expressed in terms ofknown velocity and pressure
values. By substituting the expression into the continuityequation, a new relation for
velocity and pressure is obtained. This relation is the pressure equation and it is essentially
equal to the mass conservation law. It is used to progressively correct the velocity field, so
that ultimately also the continuity requirement is fulfilled. However, also the utilization
of the pressure equation will lead to an iterative solution method [3].

Both of the mentioned problems, unlinearity and pressure-velocity coupling, result in the
fact that pressure and velocity can not be solved at one time without great difficulty, and
pose a need to iterate while solving the variables. In the following part of this chapter,
two different iterative algorithms will be derived.

2.2 Discretizing the equations

Equations (1) and (2) are discretized in order to formulate aset of equations for a spatial
domain represented by a grid. Both equations are written foreach cell in the grid, which
will result in a large set of equations. Due to the linearization practise described in Sec.
(2.1), the equations can be represented as a system of linearequations, a matrix equation.

In a general case a cell can have an arbitrary amount of neighbours and an arbitrary
convex shape. Also the neighboring cells are present in the discretized form of each
cell’s equation. According to [7], the discrete form of equations (1) and (2) is written

Nf

∑
f

(U f ·n f )Sf = 0 (4)

∆U
∆t

VP+
Nf

∑
f

U f (U ·n) f Sf −

Nf

∑
f

(ν∇U ·n) f Sf =−

Nf

∑
f

pf n f Sf , (5)

whereNf is the number of cell faces. Applying the linearization (3) to the convection
term, the momentum equation (5) becomes

∆U
∆t

VP+
Nf

∑
f

U f φ f −

Nf

∑
f

(ν∇U ·n) f Sf =−

Nf

∑
f

pf n f Sf (6)
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2.2.1 Momentum equation

The exact form of the matrix equation that results from the momentum equation depends
at least on the discretization and interpolation methods used by the solver. However, it
can always be written in the following general form:

Au U = src(U)−∇p , (7)

whereAu is the coefficient matrix of the momentum equation andsrc(U) is a source
vector.∇p is left out of the source vector to enable the manipulation presented in section
(2.2.5).

From this point on the solvers differ from each other. IntransientSimpleFoamwith the
SIMPLE pressure loop the diagonal terms of the matrixA are underrelaxed while in
icoFoamwith the PISO pressure loop no underrelaxation is applied. Thus, the momentum
equation is solved inicoFoamin a form represented by equation (8).

The terms in matrixA need to be rearranged to enable further manipulation. The matrix
is split into its diagonal and non-diagonal terms,aP andaN respectively. The following
equation is obtained [6] [7]:

aPUP+∑
Nf

aNUN = src(U)−∇p (8)

The underrelaxation of the momentum equation by a coefficient αU is applied in the fol-
lowing way:

First, the diagonal termsaP are divided in two parts:

aP =
1

αU
aP−

(1−αU)

αU
aP (9)

Then the left part - that is now larger thanaP since 0≤ αU ≤ 1 - is included in matrix
A. The right part is moved onto the right hand side of the equation and multiplied by
a known velocity. Thus the momentum equation solved intransientSimpleFoamgets its
final form [7].

aP

αU
UP+∑

N
aNUN = src(U)−∇p+

1−αU

αU
aPUP (10)

The transient-, convection- and friction terms are dividedbetween the matrixA and vector
src(U). src(U) on the right-hand-side of the equation will contain known velocities and
A the coefficients of the unknown velocities. The way in which the terms are divided is
presented separately in chapters 2.2.2, 2.2.3 and 2.2.4
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2.2.2 Transient term

The transient term can be first or second order accurate. In either way, it consists of the
velocities that are being solved and older, known, velocities. For example the first order
accurate implicite Euler method can be described in the following way:

∆U
∆t

VP =
Ut −Ut−1

∆t

In this case
Ut

∆t
would be included in the matrix as

1
∆t

on the diagonal and
Ut−1

∆t
would

be moved into thesrc(U) vector. In general, all terms involving known velocities will be
included insrc(U) and all terms that multiply the unknown velocity put intoAu [6].

2.2.3 Convection term

Introducing the definition of the flux, (3), the convection term can be expressed as:

Nf

∑
f

U f (U ·n) f Sf =
Nf

∑
f

φ f U f (11)

In OpenFOAM,φ is always defined on each cell face butU must be interpolated onto the
cell faces for the summation in equation (11).

Each row inA represents one cell in the grid. The off-diagonal terms represent the neigh-
boring cells’ contribution to the cell’s new velocity. The convection based terms inA
are found by using the upwind interpolation scheme forU. This means thatU-values are
adopted from the cell that is located on the upwind side of thesurface.
If, however, some other interpolation scheme is used forU the terms that differ from the
upwind-scheme are included insrc(U). Generally, the discretization practise of interpo-
lating the velocity values onto the cell faces can be expressed as

U f ,HS= U f ,UW − (U f ,HS−U f ,UW) = U f ,UW −U f ,∆ , (12)

where the indices represent the following:

HS : Higher order scheme

UW : Upwind Scheme

∆ : Difference between the two schemes

6



In this general case the upwind based term multiplyingU f ,UW is included inA andU f ,∆
in src(U) along with the term multiplying it. The upwind scheme creates an easily solv-
able matrix and is therefore used as the basic scheme on whichother schemes are built [6].

2.2.4 Friction term

In this case-study all friction based terms are included inA because the grid is completely
orthogonal. However, if there are non-orthogonal featuresin the grid the terms caused by
the non-orthogonality are included insrc(U).

2.2.5 Pressure equation

In order to formulate the pressure equation, a new expression for velocity is required,
from which the velocity can be solved when the pressure field is given. For this purpose
the momentum equations (8) and (10) are manipulated.

First, the off-diagonal terms of the matrixAu, aN, in equations (8) and (10) are moved
onto the right-hand-side of the equations.

aPUP =−∑
Nf

aNUN + src(U)−∇p (13)

Secondly, a new vector,H, is introduced. Equations (8) and (10) vary due to the underre-
laxation intransientSimpleFoam. Thus,H needs to be written separately for both solvers.
The definition ofH for transientSimpleFoamandicoFoamis presented in equations (14)
and (15), respectively.

SIMPLE: H(U,φ) =−∑
Nf

aNUN + src(U)+
1−αU

αU
aPUP (14)

PISO:H(U,φ) =−∑
Nf

aNUN + src(U). (15)

SubstitutingH in equations (14) and (15), into the corresponding momentumequations,
(8) and (10), both of the equations can be rewritten in a general form, where the vectorH
varies according to the solver:

aPUP = H(U,φ)−∇p (16)

Finally, equation (16) can be solved forU. In order to formulate the pressure equation,
velocities on the cell surfaces are needed. The expressionsfor the velocity in a cell center
and on a cell surface are presented in equations (17) and (18), respectively.

UP =
H(U,φ)

aP
−

∇p
aP

(17)

U f =

(

H(U,φ)
aP

)

f
−

(

1
aP

)

f
(∇p) f (18)
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The function of the pressure equation was to enable utilizing the continuity equation (1)
with the momentum equation (2). Until now, only the momentumequation has been
involved but at this point also the continuity equation is introduced. By substituting the
new velocity on the cell surfaces (18) into equation (1) a newrelation for velocity and
pressure, the pressure equation, is obtained:

∑
Nf

[

(

1
aP

)

f
(∇p) f

]

·n f Sf = ∑
Nf

(

H(U,φ)
aP

)

f
·n f Sf (19)

In OpenFOAM, this equation is treated by introducing two variables:

U⋆ =

(

H(U,φ)
aP

)

(20)

φ⋆ =
(

U⋆
f ·n f

)

Sf +φcorr (21)

In the PISO-algorithm, the velocity used in the first pressure correction contains diver-
gence because the continuity equation has at that point not yet been used. For this reason
error terms will appear in the first pressure equation and canimpair the solution in it’s in-
termediate stage [2]. Theφcorr term in equation (20) accounts for the velocity divergence.

The flux φ can be written in two ways. It can be the inner product of the velocity inter-
polated onto the cell surface with the cell surface vector,U f ·n f Sf , or it can be an older
corrected flux field.φcorr corrects the interpolated velocity based flux by comparing an
older flux,φ, and an older velocity interpolated onto the cell surface.

Substituting equations (20) and (21) into equation (19), the pressure equation for each cell
can be written:

Nf

∑
f

[

(

1
aP

)

f
(∇p) f

]

·n f Sf =
Nf

∑
f

φ⋆f (22)

By forming a similar equation for each cell, a matrix equation where the new pressure
field can be solved is obtained. The final form of the pressure equation is presented in
equation (23).

App= b , (23)

whereAp is the coefficient matrix of the pressure equation,p contains the pressure values
at each cell center andb the right-hand-side terms concerning each pressure value.Each
row in equation (23) consists of equation (22) written for one cell in the grid. After solving
for newp the velocity expression (18) can be substituted into the definition of φ (3). Thus
new fluxes that exactly fulfill the mass conservation law (22)can be calculated. In other
words, the fluxφ, is corrected with the new pressure.

φ f = φ⋆f −
((

1
aP

)

(∇p)

)

f
·n f Sf (24)
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At this point the solvers differ again. IntransientSimpleFoamthe new pressure is under-
relaxed by a factor ofαp in the following way:

pi = pi−1+αp(p
i
− pi−1) (25)

Only a part of the new pressure is used and the rest is taken from the previous iteration
round. This increases computation stability. However, theunderrelaxed pressure values
do not fulfill the momentum equation before convergence. Therefore iterations are needed
to reach convergence within a time step. When convergence isreached, the underrelax-
ation does no more change the pressure values.

With the new pressure values, also the velocity field can be corrected explicitly using
equations (17) and (20).

UP = U⋆
−

∇p
aP

After this point either the pressure correction procedure is repeated or the computation
will proceed to a new time step. The corrected velocities will be used in the right-hand-
side of the equations in further computations.

9



Solver description; icoFoam:

i: Time step index

j: PISO loop index

TIME Step:

1. Increment time:tn = tn−1+∆t.

2. Build the matrix equation (8) and solve for U:

3. PISO Loop:

(a) Rearrange the momentum equation to the form presented inequation (18) :

Ui, j
f =

(

H(Ui, j−1,φi,0)

aP

)

f
−

(

1
aP

)

f
(∇pi, j−1) f

(b) Introduce variablesU⋆ andφ⋆ according to equations (20) and (21):

U⋆,i, j =

(

H(Ui, j−1,φi,0)

aP

)

φ⋆i, j
f =

(

U⋆i, j−1
f ·n f

)

Sf +φcorr

(c) Formulate the matrix equation forp using equation (23):

Nf

∑
f

[

(

1
aP

)

f
(∇pi, j) f

]

·n f Sf =
Nf

∑
f

φ⋆i, j
f

(d) Correct the fluxφ using equation (24):

φi, j
f = φ⋆i, j

f −

((

1
aP

)

(∇pi, j)

)

f
·n f Sf

(e) Correct the velocity field explicitely using equation (17) written with the def-
inition of U⋆ (20):

Ui, j
P = U⋆,i, j

P −
1
aP

∇pi, j

(f) Start the PISO-loop again (stage 3a) if predefined tolerances are not yet met
or go to (1)
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Solver description; transientSimpleFoam:

i: Time step index

j: SIMPLE loop index

TIME Step:

1. Increment time:tn = tn−1+∆t.

2. SIMPLE Loop:

(a) Build the matrix equation (10) and solve forUi

(b) Introduce variablesU⋆ andφ⋆ according to equations 20 and 21:

U⋆,i, j =

(

H(Ui, j−1,φi,0)

aP/αU

)

φ⋆i, j
f =

(

U⋆i, j
f ·n f

)

Sf

(c) Build the pressure equation (22) and solve new pressurepi :
Nf

∑
f

[

(

1
aP

)

f
(∇pi, j) f

]

·n f Sf =
Nf

∑
f

φ⋆i, j
f

(d) Correct the flux field that fulfills mass conservation according to equation (24):

φi, j
f = φ⋆i, j

f −

((

1
aP

)

(∇pi)

)

f
·n f Sf

(e) Underrelax the new pressure value according to equation(25):

pi = pi−1+αp(pi − pi−1)

(f) Correct the velocity field according to equation (17):

UP = U⋆,i, j
P −

∇p
aP/αU

(g) Return to (2a) or continue to (1)

11



2.3 Comparing the algorithms

In this chapter, the two solution algorithms are compared against each other. Their charac-
teristics are discussed mostly in the computational effortpoint of view. Some preliminary
conclusions on what characteristics benefit one and what characteristics the other solver
are drawn. These conclusions are based on the solvers’ formulations derived earlier in
this chapter and information in literature.

In icoFoam, a time step consists of one implicit velocity computation and a set of explicit
pressure-velocity computation loops, the PISO-loops [6].During each PISO-loop, a pres-
sure field that fulfills the continuity requirement is computed and used for correcting the
flux and velocity fields,φ andU. In icoFoamthe computed velocity and pressure solu-
tions are close to the exact solution after two PISO-loops. The temporal errors of velocity
and pressure caused by the solution method, not time-discretization, are of magnitudes
O(∆t4) andO(∆t3), respectively. Any further PISO-loop improves the accuracy by one
factor. Since the error induced by the temporal discretization remains constant,O(∆t3)
with a second order scheme, there is no need for many more PISO-loops because they
would no more improve the accuracy of the computation [2].

In contrast toicoFoam, in transientSimpleFoamthe momentum equation is underrelaxed
and the new velocity solution does not correspond to the truevelocity before conver-
gence. This is the one most significant reason for the fact that, unlike in icoFoam, in tran-
sientSimpleFoamconvergence does not occur after a few pressure-velocity iterations, i.e.
SIMPLE-loops. Thus the required number of SIMPLE-loops is always greater than the
required number of PISO-loops. This implies that the solution process withtransientSim-
pleFoamrequires more computational effort than withicoFoam, unlesstransientSimple-
Foambenefits from other aspects.

One advantage of underrelaxation is, that it permits the utilization of a larger time step. A
larger time step affects the required computational effortand evokes contrast between the
solvers in at least two ways:

• In order to cover a specified time range in fewer time steps such that fewer time
loops are required. This can reduce the computational effort of transientSimple-
Foamin comparison withicoFoam.

• With larger time steps, the unlinear effects become more significant. This demands
more iteration to account for the error caused by the lagged information, which
increases the required computational effort per time step in transientSimpleFoam.

It is important to underline that the net effect of the mentioned features depends on the
case.
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3 The Case-Study: Taylor-Green Vortex

In this chapter the case-study will be presented. In section(3.1), the flow case is in-
troduced in general. Earlier contributions made with the same case are brought out and
the parameters that are varied in this study are clarified. The computation is performed
fully automated with the help of Python-scripting. The way the case is set up, solved
and post-processed is discussed in more detail in section (3.2). Section (3.3) covers the
results from the computation and some of the information in Figures (3)-(11) is pointed
out. In section (3.4) the results are interpreted and some conclusions are drawn based on
the interpretation.

3.1 General

Setting up the computation includes creating a correct gridand setting the initial and
boundary conditions for the problem. OpenFOAM’s input filesare manipulated to define
the discretization schemes, relaxation factors and the number of SIMPLE- or PISO-loops.

For post-processing, the analytical solution is calculated, the computed OpenFOAM solu-
tions are compared with it and the maximum and average errorsof velocity are calculated.
Also velocity magnitude- and pressure contours, velocity-vector fields and velocity and
pressure values along the liney= 0 are plotted.

This script presented in reference [1] is used for computingtheicoFoamcase in this study.
The script used for running thetransientSimpleFoamcomputations is a modified version
of the original script. In addition to divergence schemes and mesh density, it also varies
the number of SIMPLE-loops within a time step (nCorrectors), the time step length and
the relaxation factor of velocity. Each of the new variable parameters will be given two
different values and all combinations will be computed. Thus eighttransientSimpleFoam
cases are run with each grid. Four mesh densities are used butthe divergence scheme,
QUICK, is kept constant in all cases in this study. However, the option to vary it is pre-
served in the script. The following values are given to the variable parameters:

mesh size (8x8) (16x16) (32x32) (64x64)

nCorrectors 30 80

time step 0.01 s 0.05 s

αU 0.7 0.8

3.2 Structure

3.2.1 Setting Up and Running the Computation

Computing the cases withtransientSimpleFoamis performed with five Pythonfor-loops,
one for each variable parameter. For all combinations of variables, a new folder is created.
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First in each case folder, a baseline case consisting of the basic OpenFOAM case structure
is copied into the folder. This forms a basis to the case. After copying the basic case, the
grid is refined according to the current grid loop. Both of these tasks are performed with
the help of thePyFoam library presented in reference [8].PyFoam is a library that has been
developed to help scripting OpenFOAM with Python.

PyFoam has an application for copying the basic OpenFOAM case structure, pyFoam-
CloneCase.py, that is used for copying the baseline case. Refining the gridis performed
with a PyFoam’s class, BlockMesh, that contains a member,refineMesh. refineMesh
manipulates a dictionary,blockMeshDict, used by OpenFOAM’s own mesher utility,blockMesh,
to set the correct mesh density. When theblockMeshDicthas been manipulated,blockMesh
is run in the script [1].

Setting the rest of the variable parameters requires manipulating OpenFOAM’s set-up
files. Divergence scheme is set in the/system/fvSchemesdictionary, the number of SIMPLE-
loops and relaxation factors are set insystem/fvSolutionand time step insystem/controlDict.
All of these manipulations are performed by using standard Python functions.

Initial conditions are set with the help of a utility presented in reference [9],funkySetFields.
It makes it possible to easily set a non-uniform initial condition on a patch using a dictio-
nary,system/funkySetFields. Initial conditions are the same in all cases so the dictionary
is included in the baseline case andfunkySetFields is run by the script in each case
folder.

The computation is run by calling the solver in the script. Both solvers read the dictionar-
iessystem/fvSchemes, system/fvSolution, system/controlDict, constant/transportProperties,
constant/turbulenceProperties, 0/U and0/p.

3.2.2 Post-processing the Computation

For computing the error between the computed and analyticalsolutions, a custom Open-
FOAM utility presented in reference [1],analyticalSolutionTaylorVortex, has been devel-
oped. It computes the error at each cell center after readingthe computation results and
computing the correct values according to the analytical solution.

To see the role of the varied parameters with different mesh densities, the maximum and
average errors are extracted from the data. A temporary file corresponding to each case
is saved in theresults/-folder. Each of the files contains mesh- and error data from a
computation with one combination of parameters. That data is plotted by the subscript
tools/plotError.py. After the data is plotted the data files are deleted.

OpenFOAM’s own post-processing utility,sample, is used for extracting data from lines
y= 0 andx= 0 as well as in the part ofx−y-plane that the mesh covers.Sample reads
thesystem/sampleDictdictionary in which the mentioned sets are defined.

For plotting velocity magnitude-, pressure- and error contours, there is a subscript
tools/plotContours.py. It reads the data extracted by thesample- utility, creates the con-
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tours and saves the produced pictures. The subscript,tools/plotVectors.py, plots velocity
vector fields. Also this subscript reads the data extracted by thesample-utility.

To compare results from computations with different parameter combinations but with
a given mesh, two plots are created: One plot presents thev-velocity component, the
other the pressure values, against thex-coordinate aty = 0. This is performed by two
subscripts,tools/collectLinesData.pyandtools/plotLines.py. The first subscript reads the
velocity and pressure data extracted by thesample-utility. It gathers the data and saves
it into temporary files so that each file contains data from computation with one of the
eight parameter combinations, with all mesh densities. Thelatter subscript then reads
the temporary files and plots the data. All pictures are automatically moved intofigures/
-folder.

Finally, the subscripttools/appendix.pycreates a file that contains chosen pictures in.tex-
format. It adds the grid convergence data from computation with each set of parameters
as well as from theicoFoamcomputation. The produced file forms the appendix of this
work.

3.3 Results

In this chapter some of the information in the figures in the Appendix is pointed out and
some general observations are made. The information will beinterpreted and conclusions
drawn in chapter (3.4).

3.3.1 Errors across the Grid

The upmost subfigures in Figures (3)-(11) show the errors in the velocityv-component
and pressure along the liney = 0. Next, the contents of those subfigures will be described
in three groups. The results from theicoFoamcomputation is covered separately and the
transientSimpleFoamcomputations with the smaller time step and thetransientSimple-
Foamcomputations with the larger time step separately.

icoFoam

Figure (3) shows that the results from theicoFoamcomputations follow the analytical
solution with all mesh densities. There is visible oscillation with all of the mesh densities.
The oscillation reduces when the grid is refined.

transientSimpleFoam; smaller time step

All transientSimpleFoamcomputations with the smaller time step give almost identical
results with each other. Inv-velocity there is no noticable deviation from the analytical
solution with any of the meshes.

The pressure solutions vary more. They oscillate around theanalytical solution so that the
oscillation reduces when the grid is refined. The deviationsfrom the analytical solution
are small.

15



transientSimpleFoam; larger time step

In all of thetransientSimpleFoamcomputations with the larger time step, every grid gives
results that visually differ from the analytical solution.
With 80 SIMPLE-loops andαU = 0.8, all results are similar to each other but they visually
differ from the analytical solution. In computations with other parameter combinations,
the errors are approximately equal to these errors, except for the cases with the finest
grid. The deviations from the analytical solution with the finest grid in both pressure and
v-velocity, are many times as large as with the coarser grids.

3.3.2 Maximum Errors

Figure (2) shows the maximum velocity magnitude error in thetransientSimpleFoamand
icoFoamcomputations. The upper subfigure represents thetransientSimpleFoamcom-
putations. The errors from computations with each combination of parameters (different
curves) are plotted against mesh density (horizontal axis). The lower set of lines contains
the results represent computations with the smaller time step. In the upper set of lines the
greater time step was used.
In the lower subfigure there is only one line. It is the result from theicoFoamcomputa-
tions. The results from thetransientSimpleFoamcomputations are discussed first.

transientSimpleFoam

With the two coarsest meshes the only parameter affecting the error is time step. With the
second finest mesh, also the relaxation factors have influence on the error. The greaterαU

gives better accuracy but only if the number of SIMPLE-loopsis 30. With 80 SIMPLE-
loops both underrelaxation factors give equal error.

With the finest mesh, the differences between different parameter combinations are em-
phasized. With the smaller time step only the case with 30 SIMPLE-loops and relaxation
factorαU = 0.7 gives a greater error when compared with other cases with the same time
step.
With the greater time step, however, all four cases give deviatign errors. In these cases,
more SIMPLE-loops and a greater relaxation factor give a smaller error.

With the larger time step of 0.05 s computations with the finest mesh result in greater
errors than computations with the second finest mesh. This can be seen with all variable
combinations, except for the case withαU = 0.8 and 80 SIMPLE-loops.
With the smaller time step only the computation with the smaller αU = 0.7 and 30
SIMPLE-loops gives greater errors with the finest mesh than with the second finest mesh.

icoFoam

The errors in theicoFoamcomputations are of the same magnitude as in thetransientSim-
pleFoamcomputations with the same time step,∆t = 0.05 s. The error order of magnitude
in the icoFoamcomputations decreases with increasing mesh density, but not linearly, as
it does in the most accurate cases withtransientSimpleFoam.
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3.4 Discussion and Conclusions

In this chapter, the results described in Sec. (3.3) will be interpreted. First some con-
clusions will be drawn based on the effect of different parameters on the results with a
given mesh density. After that, the mesh density’s effect onhow the parameters affect
the results will be considered. All of these conclusions concern a SIMPLE-based solver.
Finally, there will be discussion on in what kind of cases thebenefits of SIMPLE- and
PISO - based solvers can be exploited.

3.4.1 Effect of the Parameters with a Given Mesh Density

In this subsection the effect of the varied parameters with agiven mesh density are studied.
Thus, only the results from thetransientSimpleFoamcomputations can be considered.
The results show that, in a SIMPLE-based solver, if the number of SIMPLE-loops has
any effect on the results, increasing the number improves the results. A smaller relaxation
factor and a larger time step increase the significance of SIMPLE-loops. Similarly, if the
relaxation factor has an effect on the results, a greater factor improves them. A larger
time step and less SIMPLE-loops increase the significance ofthe relaxation factor. As
expected, a smaller time step gives always better results than a larger one. Next, the
reasons behind these findings will be discussed. Each of the varied parameter will be
considered individually.

SIMPLE-loops

The fact that a computation with more SIMPLE-loops always results in a or equal error
as a computation with less SIMPLE-loops, implies that reaching a sufficient convergence
within each time step is required to reach a maximum accuracydetermined by other fac-
tors. However, after a specific number of SIMPLE-loops, i.e.after the sufficient conver-
gence is reached, increasing the number does not improve theresults.

Time step

A smaller time step reduces the effect of SIMPLE-loops on theerror which is at least due
to the fact that unlinear effects are not so significant with asmaller time step. The unlinear
effects are greater with a larger time step [6] and, to account for them and to reach the
mentioned sufficient convergence within each time step, more iterations are required.

Relaxation factors

The improving effect of a larger relaxation factor on the result is due to the fact that a
larger relaxation factor accelerates the convergence of the computation. However, it is
so only if the computation does not become unstable due to thelarger relaxation factor.
Thus, no such conclusion can be made that increasing the relaxation factor will always
improve the results, because at a too large value the computation may diverge [10].
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3.4.2 Effect of Mesh Density

The error order of magnitude decreases in most of thetransientSimpleFoamcomputations
linearly with an increasing mesh density. In some cases, however, this is not the case. It
is seen that the denser the mesh, the more critical other parameters affecting convergence
become for the results.

The results indicate that on a coarser grid smaller number ofSIMPLE-loop iterations is re-
quired to reach a sufficient convergence within a time step. However, as the mesh density
is increased, reaching this level requires a greater numberof iterations. This is because
of the relaxation factors. The iterative solution procedure within each time step can be
described as marching in pseudo-time. Smaller cells correspond to a smaller pseudo-time
step and thus cause slower convergence and a need for more SIMPLE-iterations. [11]

If a multigrid algorithm is used in solving the matrix equations, the time required for
solving the equations increases linearly with the number ofcells [10]. In other words,
the time required by each SIMPLE-loop grows linearly. Sincealso the required number
of SIMPLE-loops increases, the total computational effortrequired to reach good results
increases faster than in a linear manner.

A larger relaxation factor results in a faster convergence,regardless of mesh density.
Thereby it improves the results. However, this is the case only if the relaxation factor
does not cause the computation to diverge. Whether the mesh density affects the role of
relaxation factors in keeping the computation stable, requires further considerations and
is beyond the scope of this study.

In the icoFoamresults similar phenomena can be seen as in thetransientSimpleFoam
results. The error order of magnitude does not drop linearlywhen the mesh is refined in
an exponential manner. It might do so if the time step was shortened. The nature of the
PISO-algorithm is that the temporal errors decrease more effectively when time step is
shortened than the spatial errors when the grid is refined [2]. However, theseicoFOAM
results were computed with three PISO-loops which is much less than the 30 SIMPLE-
loops used intransientSimpleFoam. The function of PISO-loops is different from the
function of SIMPLE-loops and increasing the number of PISO-loops would probably not
fix the problem. Since no underrelaxation is applied in the PISO-algorithm, the time step
remains the only parameter that can be used for achieving theaccuracy dictated by the
spatial discretization.

3.4.3 Benefits of PISO- and SIMPLE- based solvers

All findings mentioned in the two preceding subchapters imply that a solver with a SIM-
PLE algorithm requires a sufficient convergence within eachtime step. If the tolerance is
not met, the initial conditions for the following time step are not precise enough and the
error will be accumulated. All of the varied parameters haveinfluence on if the sufficient
tolerance is met. They have the following role in the iteration process:
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• A smaller time step reduces the unlinear effects and thus reduces the iteration re-
quired to reach the sufficient tolerance that assures good results.

• A smaller relaxation factor postpones convergence and thuscauses a need for more
iteration rounds.

• A finer mesh slows down the converging process and thus more iteration within a
time step is required to reach given tolerances.

• With more SIMPLE-loops, tighter tolerances are reached.

Dispite of the fully implicit discretization inicoFOAM, the stability of the computation is
impaired by the intermediate steps in the solution procedure. The pressure corrections are
of explicit nature. This imposes time step limitations thatare difficult to formulate in a
precise manner [2]. Since no underrelaxation is applied inicoFOAM, time step provides
the only means to account for the unlinear effects and to adjust the accuracy with a given
mesh.

The potential benefit of the SIMPLE-algorithm in comparisonwith the PISO-algorithm
is, that underrelaxation and the number of SIMPLE-loops canbe used to adjust the com-
putation to account for problems induced by a longer time step. In this perspective the
problem of choosing one of these solvers can be turned into the problem of deciding if
the longer time step offsets the extra costs caused by adjusting the computation with un-
derrelaxation and the number of SIMPLE-loops. Thus, the following conclusion can be
drawn.

Using a SIMPLE-based solver can be recommended in cases where unlinear effects are
not dominating. In such cases a longer time step can be utilized and thus a specified
time range can be covered with less computational effort with a SIMPLE- than with a
PISO-based solver. However, if the unlinear effects are great or the mesh is large enough,
a SIMPLE-based solver requires strict tolerances i.e. manySIMPLE-loops within each
time step, which cancels out the benefits achieved with the longer time step.

Because a PISO-based solver lacks underrelaxation, time step is the only way to improve
accuracy and the required time step is always relatively short. Since the accuracy of a
PISO-based solver is at it maximum with very few PISO-loops,a PISO-based solver is a
good solver choise for cases with strong unlinearity.
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4 Error Discussion and Further Subjects for Study

In this study three parameters were varied. There are many more parameters that affect
the computation and its convergence, for example discretization methods. Changing these
parameters would lead to different results. However, the phenomena seen in the results
would probably not change considerably.

In this case-study very simple, orthogonal, meshes were used. Thus, it remains unclear
how the solvers behave with more complex meshes with non-orthogonal terms included.
Non-orthogonalities will produce new terms into the equations and thus affect the required
computational effort. This study, however, does not tell ifthey affect one solver more
than the other and if they do, which solver will benefit more. Thus, the effect of the cells’
shapes on the convergence and feasibility of the solvers would be an interesting subject
for study.

The way in which a finer mesh affects the required computational effort remains some-
what ambiquous. It is seen that the required number of SIMPLE-loops increases with
mesh size. However, with different tolerances within a SIMPLE-loop the results of this
study would be different. One parameter might be emphasizedmore and another’s effect
might be less obvious. Thus a study on how much more SIMPLE-loops are required with
different tolerances within a SIMPLE-loop would give a better insight into the problem
and thus also a better starting point for a solver choise.
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Figure 3 div(phi,U)=QUICK, mesh (32x32),icoFoam
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Figure 4 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=30, ∆t=0.05 ,αU=0.7,αp=0.3

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0
x coordinate

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

v-
co

m
po

ne
nt

 of
 ve

loc
ity

Grid convergence for 
 div(phi,U)=QUICK, nC=30, 
t=0.01

�U =0.7, �p=0.3

mesh64
mesh16
mesh8
mesh32
analytical

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0
x coordinate

�0.010

�0.008

�0.006

�0.004

�0.002

0.000

0.002

pr
es

su
re

Figure 5 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80, ∆t=0.01 ,αU=0.7,αp=0.3
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Figure 6 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80, ∆t=0.05 ,αU=0.8,αp=0.3
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Figure 7 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80, ∆t=0.05 ,αU=0.7,αp=0.3
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Figure 8 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=30, ∆t=0.01 ,αU=0.8,αp=0.3
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Figure 9 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=30, ∆t=0.05 ,αU=0.8,αp=0.3
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Figure 10 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80, ∆t=0.01 , αU=0.8,
αp=0.3
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Grid convergence for 
 div(phi,U)=QUICK, nC=80, �t=0.01

 U =0.8,  p=0.3
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Figure 11 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=30, ∆t=0.01 , αU=0.7,
αp=0.3
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