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Symbols and Abbreviations

AY matrix in the momentum equation
AP matrix in the pressure equation
off-diagonal term of matriA"

an
ap diagonal term of matriA!

b vector in the pressure equation
H

— g anUn +src(U)
f

Nn¢ normal vector of a cell face
Nt number of faces in a cell
p pressure
oF: pressure on a cell face
u velocity x-component
U velocity vector
Us velocity vector on a cell face

Ut ns  velocity interpolated using some other than the upwind sehe

Ufuw Vvelocity using the upwind scheme

Uta  Usns—Uruw

Un velocity vector in a neighboring cells center
Up velocity vector in a cell center
o
ap
St surface area of a cell face
src vsource vector in the momentum equation
At increment of time; time step
u velocity x-component
v velocity y-component
w velocity z-component
\Vp volume of a cell around point P
X x-coordinate
y y-coordinate

Z zcoordinate



oy  relaxation factor of the momentum equation
ap  relaxation factor of pressure

(0] volume flux

(OF volume flux on a cell face

Qcorr COrrection term ofp*

0y (U?‘nf)sf+(Pcorr

Vv kinematic viscosity

CFD Computational Fluid Dynamics



1 Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD) is an important tool imaaiety of fields such as
aeronautical engineering and turbomachinery as well g5 simd car design. The de-
velopment of computer technology and numerical methods haade it possible to run
simulations on regular PC’s and CFD is increasingly employ® a design tool in engi-
neering. To increase the feasibility of preliminary desigth CFD, effective methods of
running transient viscous flow computations are neededwhkatyge of the characteristics
of existing solution methods gives a better starting pamntsklecting the most effective
way of running a computation and thus save time and costs.

An open source CFD code opens the way for customizing andreatiiog computations in
a versatile manner. Being able to automatically vary pataraenakes comparing cases
with slight differences fast and effective. For example shhape of an airplane, or of a
part of it, could be optimized by running computations witigtstly different shapes and
comparing the results.

Indeed, at the present state of CFD all from grid generatopast-processing can be
defined in advance so that no computer-human interacticeeided after the computation
has been started. This is the case in this work, too. Howéwere is still much to be
developed in the field since the automation of computatithgsposes limitations. The
subject is currently under research [1].

1.2 Objective

The goal of this work is to compare two different pressuresdasolution algorithms for
transient flow with viscous effects included, one with P1$2}-and one with SIMPLE-
pressure correction algorithm [3]. This is done using amagmurce CFD library, Open-
FOAM [4]. The solvers used areansientSimpleFoarandicoFoam One case is com-
puted with the PISO-basecbFoamand eight cases with the SIMPLE-basexhsientSim-
pleFoam The PISO-based results are used as reference and the SthHadd results are
compared against them.

At the end of this work there will be a discussion of flow featthat affect the applica-
bility of the two solution methods. Some general guidelioehow to choose the more
adequate solution method will be outlined.

1.3 Outline

The case studied is called the Taylor-Green vortex. It isadiwnensional decaying vor-
tex in a square domain. The case is transient and there isadytiaal solution for it. It
has been used for testing accuracy of numerical methodsird={@) shows the velocity
magnitude and pressure fields according to the analytisaltresed in this work as a
reference.

The solvers are run with help of Python-scripting. Refeee[id contains a script that
handles the whole flow case. It runs fkeFoamsolver in OpenFOAM and changes the
mesh-density and divergence schemes. In addition to rgrthie case, the script also



Analytical solution (A) pressure
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Figure 1 Velocity and Pressure Fields According to the Atiedy Solution.

handles the pre- and post-processing of the case.



2 Flow Solvers

In this chapter, the governing equations of viscous tramglew will be presented. The
equations form a set of unlinear partial differential equrad.

To enable solving the set of equations with a computer, aetis¢orm of the equations
needs to be presented. The discretizing treatments fereiff terms in the equations will
be presented separately. The treatments will include tieatization of the convection
term as well as the formulation of the transient and frictenmns. Also a way to utilize the
mass conservation law along with the momentum conserviavarthe pressure equation,
will be derived.

At the end of this chapter, the two computer algorithms thatwsed for solving the
equations in this work, will be presented in detail. Theia@cteristics will be discussed
and compared against one another.

2.1 Theoretical Background

A time-dependent incompressible laminar flow is governedheyNavier-Stokes equa-
tions and mass conservation, i.e. continuity, equation [6]

0.-U=0 (1)
%_ltJ+D.(UU)—D-(vDU):—Dp 2

There are two main difficulties in these equations:
1) The convection terrl - (UU) is unlinear because velocity is multiplied by itself and

2) the equations are coupleduhandp.

The first problem, unlinearity, will be handled by introdogia new flux variable [5]

@t =Us-nSt , (3)

whereUs is velocity interpolated onto a cell face,is the unit normal vector of the cell
face andS; the area of the cell surface The point is that the fquwill be calculated
using known velocities and thus the convection term willyoobntain a known scalar
variable and one unknown term, the velocity being solved T8lis treatment linearizes
the convection term. For the linearized form, see sectidh 32

The fact that the transporting part of the convection tepnis calculated using known
velocities means that information is lagged. If the errarsesl by the lagged information
can not be neglected, an iterative solution method is neediedhat case th&nown
values needed to calculagecan be taken from the previous iteration round. Until the



velocity field no more changes from one iteration round totla@o the convection term
does not correspond to the true convection term, but afterezgence the lagging is no
more significant [6].

Because of the pressure-velocity coupling, the momentunatezn can not be solved
without an existing pressure field. Since the pressure fgldni general, not known,
an initial pressure field needs to be estimated. Howeveheifestimate is not the true
pressure field, the velocity solution from the momentum é&qguadoes not fulfill the
continuity requirement [3].

This problem is dealt with by deriving a pressure equatione Thomentum equation is
manipulated so that new velocities are expressed in terikisavin velocity and pressure
values. By substituting the expression into the continetyation, a new relation for
velocity and pressure is obtained. This relation is thequessequation and it is essentially
equal to the mass conservation law. It is used to progrdgsigerect the velocity field, so
that ultimately also the continuity requirement is fulfilleHowever, also the utilization
of the pressure equation will lead to an iterative soluticthod [3].

Both of the mentioned problems, unlinearity and presseteeity coupling, result in the
fact that pressure and velocity can not be solved at one tit@ut great difficulty, and
pose a need to iterate while solving the variables. In thiedahg part of this chapter,
two different iterative algorithms will be derived.

2.2 Discretizing the equations

Equations (1) and (2) are discretized in order to formulagetaof equations for a spatial
domain represented by a grid. Both equations are writteedoh cell in the grid, which

will result in a large set of equations. Due to the lineai@apractise described in Sec.
(2.1), the equations can be represented as a system ofdéigeations, a matrix equation.

In a general case a cell can have an arbitrary amount of neighland an arbitrary
convex shape. Also the neighboring cells are present in igeradized form of each
cell’s equation. According to [7], the discrete form of etiaas (1) and (2) is written

Nt

Z(Uf'ﬂf)SfZO (4)
v N - <
A P+Zuf(u.n)fsf_2(vDU~n)fo:—prnfsf, (5)

whereNs is the number of cell faces. Applying the linearization (8)thhe convection
term, the momentum equation (5) becomes

N¢ Nt Nt

—Vp—I—ZUf(pf—Z(VDU'n)fo:—prnfsf (6)



2.2.1 Momentum equation

The exact form of the matrix equation that results from themaotum equation depends
at least on the discretization and interpolation methoesl Uy the solver. However, it
can always be written in the following general form:

AYU=sc(U)—0p, (7)

whereAY is the coefficient matrix of the momentum equation anc(U) is a source
vector.[Ipis left out of the source vector to enable the manipulati@sented in section
(2.2.5).

From this point on the solvers differ from each other.tlansientSimpleFoamwith the
SIMPLE pressure loop the diagonal terms of the mafiare underrelaxed while in
icoFoamwith the PISO pressure loop no underrelaxation is appliétisTthe momentum
equation is solved ircoFoamin a form represented by equation (8).

The terms in matriXA need to be rearranged to enable further manipulation. Thexma
is split into its diagonal and non-diagonal terras,anday respectively. The following
equation is obtained [6] [7]:

apUp-i—gaNUN:src(U)—Dp (8)

The underrelaxation of the momentum equation by a coefticigns applied in the fol-
lowing way:

First, the diagonal termae are divided in two parts:

1 l1-a
ap— —ap— 1 Wg (9)
(o(F] Oy

Then the left part - that is now larger than since 0< ay < 1 - is included in matrix
A. The right part is moved onto the right hand side of the equaéind multiplied by
a known velocity. Thus the momentum equation solvettansientSimpleFoargets its
final form [7].

ap 1-ay

ay

UP+%8NUN =src(U)—Op+ apUp (10)

The transient-, convection- and friction terms are dividetiveen the matriA and vector
src(U). sre(U) on the right-hand-side of the equation will contain knowioegies and
A the coefficients of the unknown velocities. The way in whilsh terms are divided is
presented separately in chapters 2.2.2,2.2.3and 2.2.4



2.2.2 Transient term

The transient term can be first or second order accurate tHarevay, it consists of the
velocities that are being solved and older, known, velesitiFor example the first order
accurate implicite Euler method can be described in thevioiig way:

AU t o t—1
AU, U-ut
At At

Ut 1 t-1
In this caseA—t would be included in the matrix a& on the diagonal anéjAT would

be moved into therc(U) vector. In general, all terms involving known velocitiedlvie
included insrc(U) and all terms that multiply the unknown velocity put irA8 [6].

2.2.3 Convection term

Introducing the definition of the flux, (3), the convectiomtecan be expressed as:

ZUf(U'n)foZZCPfo (11)

In OpenFOAM,@is always defined on each cell face hiimust be interpolated onto the
cell faces for the summation in equation (11).

Each row inA represents one cell in the grid. The off-diagonal termsasgnt the neigh-
boring cells’ contribution to the cell’'s new velocity. Therwection based terms i
are found by using the upwind interpolation schemelfoiThis means thdt-values are
adopted from the cell that is located on the upwind side oftiréace.

If, however, some other interpolation scheme is usedJftine terms that differ from the
upwind-scheme are included snc(U). Generally, the discretization practise of interpo-
lating the velocity values onto the cell faces can be exprkas

Ut Hs=Usuw — (Ut ns—Usuw) =Usuw —Usa , (12)

where the indices represent the following:

HS : Higher order scheme
UW : Upwind Scheme

A : Difference between the two schemes



In this general case the upwind based term multiplydhg is included inA andUs A
in src(U) along with the term multiplying it. The upwind scheme creae easily solv-
able matrix and is therefore used as the basic scheme on wathiehschemes are built [6].

2.2.4 Friction term

In this case-study all friction based terms are includefl lecause the grid is completely
orthogonal. However, if there are non-orthogonal featurélse grid the terms caused by
the non-orthogonality are included $nc(U).

2.2.5 Pressure equation

In order to formulate the pressure equation, a new expnegsiovelocity is required,
from which the velocity can be solved when the pressure feelghien. For this purpose
the momentum equations (8) and (10) are manipulated.

First, the off-diagonal terms of the matr®”, ay, in equations (8) and (10) are moved
onto the right-hand-side of the equations.

apUp:—gaNUN—i—src(U)—Dp (13)
f

Secondly, a new vecto, is introduced. Equations (8) and (10) vary due to the umderr
laxation intransientSimpleFoanThus,H needs to be written separately for both solvers.
The definition ofH for transientSimpleFoarmandicoFoamis presented in equations (14)
and (15), respectively.

1—ay

SIMPLE:H(U, @) = —gaNUN +src(U) + apUp (14)
f

PISO:H (U, ) = —gaNUN +sre(U). (15)

SubstitutingH in equations (14) and (15), into the corresponding momergguations,
(8) and (10), both of the equations can be rewritten in a gef@m, where the vectdd
varies according to the solver:

apUp =H(U, ) —Op (16)

Finally, equation (16) can be solved for In order to formulate the pressure equation,
velocities on the cell surfaces are needed. The expredsiptige velocity in a cell center
and on a cell surface are presented in equations (17) andr€sRectively.

Up— 1Y@ _Op (17)

ap ap

_(HY@9\ (1
Uf_( ap )f (aP)f<Dp)f (18)



The function of the pressure equation was to enable utyi#e continuity equation (1)
with the momentum equation (2). Until now, only the momentequation has been
involved but at this point also the continuity equation isaduced. By substituting the
new velocity on the cell surfaces (18) into equation (1) a melation for velocity and

pressure, the pressure equation, is obtained:

gf[(%)f(mp)f]'nfsfzgf<¥)f-nf8f (19)

In OpenFOAM, this equation is treated by introducing twaoakles:

. H(U,cp))
U _( - (20)
¢ = (U?‘nf>sf+(Pcorr (21)

In the PISO-algorithm, the velocity used in the first presstorrection contains diver-
gence because the continuity equation has at that pointatdteen used. For this reason
error terms will appear in the first pressure equation androgair the solution in it’s in-
termediate stage [2]. Thgor term in equation (20) accounts for the velocity divergence.

The flux @ can be written in two ways. It can be the inner product of theacity inter-
polated onto the cell surface with the cell surface vediigr,n; S¢, or it can be an older
corrected flux field.@orr corrects the interpolated velocity based flux by comparimg a
older flux, @, and an older velocity interpolated onto the cell surface.

Substituting equations (20) and (21) into equation (19 piressure equation for each cell

can be written: N, . Ny
> [(;)f(mmf] S =36 (22)

By forming a similar equation for each cell, a matrix equatwhere the new pressure
field can be solved is obtained. The final form of the pressguaion is presented in
equation (23).

APp=Dh, (23)

whereAP is the coefficient matrix of the pressure equatiprpntains the pressure values
at each cell center aralthe right-hand-side terms concerning each pressure vaheh
row in equation (23) consists of equation (22) written foe @ell in the grid. After solving
for new p the velocity expression (18) can be substituted into thendiefin of ¢ (3). Thus
new fluxes that exactly fulfill the mass conservation law (@&) be calculated. In other
words, the fluxp, is corrected with the new pressure.

o =ai-((5) <Dp>)f~nfsf (24)



At this point the solvers differ again. ImansientSimpleFoarthe new pressure is under-
relaxed by a factor aoft, in the following way:

p'=p " +ap(p —p) (25)
Only a part of the new pressure is used and the rest is takentfre previous iteration
round. This increases computation stability. However,uhderrelaxed pressure values
do not fulfill the momentum equation before convergence r&foee iterations are needed
to reach convergence within a time step. When convergeneadhed, the underrelax-
ation does no more change the pressure values.

With the new pressure values, also the velocity field can lieected explicitly using
equations (17) and (20).

After this point either the pressure correction procedareepeated or the computation
will proceed to a new time step. The corrected velocitie$ bélused in the right-hand-
side of the equations in further computations.



Solver description; icoFoam:

i Time step index

j: PISO loop index

TIME Step:

1. Increment timet" = t"—1 1+ At.

2. Build the matrix equation (8) and solve for U:
3. PISO Loop:
(a) Rearrange the momentum equation to the form presentsglition (18) :
Uif,j _ (H(Ui,j—l,(dvo)) _ (i) (Op-i-1),
ap ¢ \ap /¢

(b) Introduce variables* and@* according to equations (20) and (21):

Urid — (H(Ui’;:a(d’o))

(p)fkiyj = (U’f(iyjil'nf) St + Qeorr
(c) Formulate the matrix equation fprusing equation (23):
N¢ 1 Nf ..
=) (00l ones = S @t
Z[(ap)f( p )f] £ St Z(Pf

(d) Correct the fluxp using equation (24):

i 1 i
o' =@~ ((;) (Dp"))f-nfsf

(e) Correct the velocity field explicitely using equatio”{vritten with the def-
inition of U™ (20):

U|P7] — U;;IJ _ gl]pl,]

(H Start the PISO-loop again (stage 3a) if predefined toleza are not yet met
orgoto (1)
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Solver description; transientSimpleFoam:

i Time step index

j: SIMPLE loop index

TIME Step:

1. Increment timet" = t"—1 L At

2. SIMPLE L oop:

(a) Build the matrix equation (10) and solve fdf
(b) Introduce variable®* andg@* according to equations 20 and 21:

Urid — (H(Ui’j_lad’o))
ap/dy
¢! = (U?I’J ‘nf> St

(c) Build the pressure equation (22) and solve new pressure

N¢ 1 N
R | i -n — oy
Z[(ap)f( p )f] £ St Z(Pf
(d) Correct the flux field that fulfills mass conservation adong to equation (24):
. . 1 )
] — x| _ T D | ‘n
M ((aP)( p))f o
(e) Underrelax the new pressure value according to equén

p=p""+ap(p-p Y
(f) Correct the velocity field according to equation (17):

U — U*7|7J _
PP ap/dy

(9) Return to (2a) or continue to (1)

11



2.3 Comparing the algorithms

In this chapter, the two solution algorithms are comparexres each other. Their charac-
teristics are discussed mostly in the computational effoit of view. Some preliminary
conclusions on what characteristics benefit one and whaacteaistics the other solver
are drawn. These conclusions are based on the solvers’ liations derived earlier in
this chapter and information in literature.

In icoFoam a time step consists of one implicit velocity computatiod a set of explicit
pressure-velocity computation loops, the PISO-loops&iting each PISO-loop, a pres-
sure field that fulfills the continuity requirement is comgaiand used for correcting the
flux and velocity fieldsgp andU. In icoFoamthe computed velocity and pressure solu-
tions are close to the exact solution after two PISO-loope tEmporal errors of velocity
and pressure caused by the solution method, not time-tization, are of magnitudes
O(At%) and O(At3), respectively. Any further PISO-loop improves the accurag one
factor. Since the error induced by the temporal discreétimatemains constanty)(At®)
with a second order scheme, there is no need for many more-BI§S because they
would no more improve the accuracy of the computation [2].

In contrast tacoFoam in transientSimpleFoarthe momentum equation is underrelaxed
and the new velocity solution does not correspond to the valecity before conver-
gence. This is the one most significant reason for the fattuhéke inicoFoam in tran-
sientSimpleFoarmonvergence does not occur after a few pressure-veloeigtions, i.e.
SIMPLE-loops. Thus the required number of SIMPLE-loopslvgags greater than the
required number of PISO-loops. This implies that the solufirocess witlransientSim-
pleFoamrequires more computational effort than wittoFoam unlesstransientSimple-
Foambenefits from other aspects.

One advantage of underrelaxation is, that it permits tHeation of a larger time step. A
larger time step affects the required computational eiod evokes contrast between the
solvers in at least two ways:

e In order to cover a specified time range in fewer time steph slat fewer time
loops are required. This can reduce the computationalteffoiransientSimple-
Foamin comparison withcoFoam

e With larger time steps, the unlinear effects become momfszgnt. This demands
more iteration to account for the error caused by the laggémmation, which
increases the required computational effort per time sté@nsientSimpleFoam

It is important to underline that the net effect of the men¢id features depends on the
case.

12



3 The Case-Study: Taylor-Green Vortex

In this chapter the case-study will be presented. In sedBoh), the flow case is in-

troduced in general. Earlier contributions made with thmes@ase are brought out and
the parameters that are varied in this study are clarifiece cdmputation is performed
fully automated with the help of Python-scripting. The wag ttase is set up, solved
and post-processed is discussed in more detail in secti@h (Section (3.3) covers the
results from the computation and some of the informationigufes (3)-(11) is pointed

out. In section (3.4) the results are interpreted and somelgsions are drawn based on
the interpretation.

3.1 General

Setting up the computation includes creating a correct gnd setting the initial and
boundary conditions for the problem. OpenFOAM’s input fies manipulated to define
the discretization schemes, relaxation factors and theéoeunf SIMPLE- or PISO-loops.

For post-processing, the analytical solution is calcalattee computed OpenFOAM solu-
tions are compared with it and the maximum and average esferdocity are calculated.

Also velocity magnitude- and pressure contours, veloeggtor fields and velocity and
pressure values along the lige= 0 are plotted.

This script presented in reference [1] is used for computiegcoFoamcase in this study.

The script used for running thteansientSimpleFoarmomputations is a modified version
of the original script. In addition to divergence schemed mresh density, it also varies
the number of SIMPLE-loops within a time step (nCorrectotis¢ time step length and
the relaxation factor of velocity. Each of the new variabdegmeters will be given two

different values and all combinations will be computed. FbkighttransientSimpleFoam

cases are run with each grid. Four mesh densities are usetebdivergence scheme,
QUICK, is kept constant in all cases in this study. Howeuse, @ption to vary it is pre-

served in the script. The following values are given to thealde parameters:

mesh size (8x8) | (16x16)| (32x32) | (64x64)

nCorrectors| 30 80

timestep | 0.01s| 0.05s
oy 0.7 0.8

3.2 Structure
3.2.1 Setting Up and Running the Computation

Computing the cases withansientSimpleFoams performed with five Pythohor -loops,
one for each variable parameter. For all combinations oélées, a new folder is created.

13



Firstin each case folder, a baseline case consisting oftsie @penFOAM case structure
is copied into the folder. This forms a basis to the case.rAf@ying the basic case, the
grid is refined according to the current grid loop. Both ofsthéasks are performed with
the help of théPyFoamlibrary presented in reference [§yFoamis a library that has been
developed to help scripting OpenFOAM with Python.

PyFoam has an application for copying the basic OpenFOAM case tstreiqpyFoam-
CloneCase.pythat is used for copying the baseline case. Refining theigperformed

with a PyFoanis class, BlockMesh, that contains a membef,i neMesh. refi neMesh
manipulates a dictionariglockMeshDictused by OpenFOAM’s own mesher utiliby,ockMesh,
to set the correct mesh density. WhenbleckMeshDichas been manipulatel,ockMesh

is run in the script [1].

Setting the rest of the variable parameters requires mkatipg OpenFOAM'’s set-up
files. Divergence scheme is setin tegstem/fvSchemdgtionary, the number of SIMPLE-
loops and relaxation factors are sesystem/fvSolutioand time step isystem/controlDict
All of these manipulations are performed by using standgttidh functions.

Initial conditions are set with the help of a utility preseain reference [9],unkySet Fi el ds.
It makes it possible to easily set a non-uniform initial ctloth on a patch using a dictio-
nary, system/funkySetFieldiitial conditions are the same in all cases so the dictipna
is included in the baseline case ainghkySet Fi el ds is run by the script in each case
folder.

The computation is run by calling the solver in the scriptttBsolvers read the dictionar-
iessystem/fvSchemesystem/fvSolutigsystem/controlDigtonstant/transportProperties
constant/turbulencePropertigd/U and0/p.

3.2.2 Post-processing the Computation

For computing the error between the computed and analgatations, a custom Open-
FOAM utility presented in reference [13nalyticalSolutionTaylorVortexhas been devel-
oped. It computes the error at each cell center after reatismmgomputation results and
computing the correct values according to the analyticiaitsm.

To see the role of the varied parameters with different mestsities, the maximum and
average errors are extracted from the data. A temporarydii@sponding to each case
is saved in theesultstHfolder. Each of the files contains mesh- and error data from a
computation with one combination of parameters. That dagadtted by the subscript
tools/plotError.py After the data is plotted the data files are deleted.

OpenFOAM'’s own post-processing utiliyanpl e, is used for extracting data from lines
y =0 andx = 0 as well as in the part of— y-plane that the mesh coverSanpl e reads
thesystem/sampleDiclictionary in which the mentioned sets are defined.

For plotting velocity magnitude-, pressure- and error oard, there is a subscript
tools/plotContours.pylt reads the data extracted by thenpl e- utility, creates the con-
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tours and saves the produced pictures. The substrgds/plotVectors.pyplots velocity
vector fields. Also this subscript reads the data extracyatidssanpl e-utility.

To compare results from computations with different par@meombinations but with
a given mesh, two plots are created: One plot presents-tleocity component, the
other the pressure values, against xfmordinate aty = 0. This is performed by two
subscriptstools/collectLinesData.pgndtools/plotLines.pyThe first subscript reads the
velocity and pressure data extracted by shepl e-utility. It gathers the data and saves
it into temporary files so that each file contains data from matation with one of the
eight parameter combinations, with all mesh densities. [atter subscript then reads
the temporary files and plots the data. All pictures are aatmally moved intdigures/
-folder.

Finally, the subscriptools/appendix.pgreates a file that contains chosen pictureser
format. It adds the grid convergence data from computatibim @ach set of parameters
as well as from thécoFoamcomputation. The produced file forms the appendix of this
work.

3.3 Results

In this chapter some of the information in the figures in thepéqdix is pointed out and
some general observations are made. The information wiliteepreted and conclusions
drawn in chapter (3.4).

3.3.1 Errors across the Grid

The upmost subfigures in Figures (3)-(11) show the errorienvelocityv-component
and pressure along the lie= 0. Next, the contents of those subfigures will be described
in three groups. The results from tle@Foamcomputation is covered separately and the
transientSimpleFoarnomputations with the smaller time step and tr@sientSimple-
Foamcomputations with the larger time step separately.

icoFoam

Figure (3) shows that the results from tlt@Foamcomputations follow the analytical
solution with all mesh densities. There is visible osddlatwith all of the mesh densities.
The oscillation reduces when the grid is refined.

transientSimpleFoam; smaller time step

All transientSimpleFoamomputations with the smaller time step give almost idetic
results with each other. Imvelocity there is no noticable deviation from the analgtic
solution with any of the meshes.

The pressure solutions vary more. They oscillate aroundriagtical solution so that the
oscillation reduces when the grid is refined. The deviatfom® the analytical solution
are small.
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transientSimpleFoam,; larger time step

In all of thetransientSimpleFoamomputations with the larger time step, every grid gives
results that visually differ from the analytical solution.

With 80 SIMPLE-loops andy = 0.8, all results are similar to each other but they visually
differ from the analytical solution. In computations witther parameter combinations,
the errors are approximately equal to these errors, exceghé cases with the finest
grid. The deviations from the analytical solution with theest grid in both pressure and
v-velocity, are many times as large as with the coarser grids.

3.3.2 Maximum Errors

Figure (2) shows the maximum velocity magnitude error inttaasientSimpleFoarand
icoFoamcomputations. The upper subfigure representsrdmesientSimpleFoamom-
putations. The errors from computations with each comhtnaif parameters (different
curves) are plotted against mesh density (horizontal aXis lower set of lines contains
the results represent computations with the smaller tieya st the upper set of lines the
greater time step was used.

In the lower subfigure there is only one line. It is the residtrf theicoFoamcomputa-
tions. The results from thigansientSimpleFoarmomputations are discussed first.

transientSimpleFoam

With the two coarsest meshes the only parameter affectegrtior is time step. With the
second finest mesh, also the relaxation factors have inuemthe error. The greatey
gives better accuracy but only if the number of SIMPLE-lo@30. With 80 SIMPLE-
loops both underrelaxation factors give equal error.

With the finest mesh, the differences between differentrpatar combinations are em-
phasized. With the smaller time step only the case with 30F&IE}Hoops and relaxation
factoray = 0.7 gives a greater error when compared with other cases vatbaime time
step.

With the greater time step, however, all four cases givealgn errors. In these cases,
more SIMPLE-loops and a greater relaxation factor give alsmerror.

With the larger time step of 0.05 s computations with the fimessh result in greater
errors than computations with the second finest mesh. Thibeaeen with all variable
combinations, except for the case with = 0.8 and 80 SIMPLE-loops.

With the smaller time step only the computation with the demady = 0.7 and 30
SIMPLE-loops gives greater errors with the finest mesh thiéimtive second finest mesh.

icoFoam

The errors in thécoFoamcomputations are of the same magnitude as itrtesientSim-
pleFoamcomputations with the same time sté&p= 0.05 s. The error order of magnitude
in theicoFoamcomputations decreases with increasing mesh densitydblinearly, as

it does in the most accurate cases virinsientSimpleFoam
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3.4 Discussion and Conclusions

In this chapter, the results described in Sec. (3.3) willrderpreted. First some con-
clusions will be drawn based on the effect of different paeters on the results with a
given mesh density. After that, the mesh density’s effechow the parameters affect
the results will be considered. All of these conclusionsceon a SIMPLE-based solver.
Finally, there will be discussion on in what kind of cases lleaefits of SIMPLE- and

PISO - based solvers can be exploited.

3.4.1 Effect of the Parameters with a Given Mesh Density

In this subsection the effect of the varied parameters wgfilien mesh density are studied.
Thus, only the results from theansientSimpleFoamomputations can be considered.
The results show that, in a SIMPLE-based solver, if the nunolb&IMPLE-loops has
any effect on the results, increasing the number improwesebsults. A smaller relaxation
factor and a larger time step increase the significance oP&BAloops. Similarly, if the
relaxation factor has an effect on the results, a greatéorfamproves them. A larger
time step and less SIMPLE-loops increase the significant¢beofelaxation factor. As
expected, a smaller time step gives always better reswdts ghlarger one. Next, the
reasons behind these findings will be discussed. Each ofghedvparameter will be
considered individually.

SIMPLE-loops

The fact that a computation with more SIMPLE-loops alwaysiles in a or equal error
as a computation with less SIMPLE-loops, implies that reagh sufficient convergence
within each time step is required to reach a maximum accutatsrmined by other fac-
tors. However, after a specific number of SIMPLE-loops, aker the sufficient conver-
gence is reached, increasing the number does not improveshks.

Time step

A smaller time step reduces the effect of SIMPLE-loops oretier which is at least due
to the fact that unlinear effects are not so significant wishmaller time step. The unlinear
effects are greater with a larger time step [6] and, to acctarthem and to reach the
mentioned sufficient convergence within each time steperiterations are required.

Relaxation factors

The improving effect of a larger relaxation factor on theutess due to the fact that a
larger relaxation factor accelerates the convergenceeotdmputation. However, it is
so only if the computation does not become unstable due tatber relaxation factor.
Thus, no such conclusion can be made that increasing theatiga factor will always

improve the results, because at a too large value the cotigputaay diverge [10].
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3.4.2 Effect of Mesh Density

The error order of magnitude decreases in most ofrresientSimpleFoamomputations
linearly with an increasing mesh density. In some casesehenythis is not the case. It
is seen that the denser the mesh, the more critical othemg#ess affecting convergence
become for the results.

The results indicate that on a coarser grid smaller numb®hdPLE-loop iterations is re-
quired to reach a sufficient convergence within a time stejpwéver, as the mesh density
is increased, reaching this level requires a greater nuwibégrations. This is because
of the relaxation factors. The iterative solution procedwithin each time step can be
described as marching in pseudo-time. Smaller cells qooresto a smaller pseudo-time
step and thus cause slower convergence and a need for moRLEHEerations. [11]

If a multigrid algorithm is used in solving the matrix equats, the time required for
solving the equations increases linearly with the numbegetls [10]. In other words,
the time required by each SIMPLE-loop grows linearly. Siats® the required number
of SIMPLE-loops increases, the total computational effeduired to reach good results
increases faster than in a linear manner.

A larger relaxation factor results in a faster convergemegardless of mesh density.
Thereby it improves the results. However, this is the cadg ibithe relaxation factor
does not cause the computation to diverge. Whether the neswity affects the role of
relaxation factors in keeping the computation stable, iregufurther considerations and
is beyond the scope of this study.

In the icoFoamresults similar phenomena can be seen as intdr@sientSimpleFoam
results. The error order of magnitude does not drop lineaHgn the mesh is refined in
an exponential manner. It might do so if the time step wastehed. The nature of the
PI1SO-algorithm is that the temporal errors decrease mdeetafely when time step is
shortened than the spatial errors when the grid is refinedH2jvever, thesecoFOAM
results were computed with three PISO-loops which is musé tkan the 30 SIMPLE-
loops used irtransientSimpleFoamThe function of PISO-loops is different from the
function of SIMPLE-loops and increasing the number of PI8@ps would probably not
fix the problem. Since no underrelaxation is applied in tHe@hlgorithm, the time step
remains the only parameter that can be used for achievingdtwracy dictated by the
spatial discretization.

3.4.3 Benefits of PISO- and SIMPLE- based solvers

All findings mentioned in the two preceding subchapters yntipat a solver with a SIM-
PLE algorithm requires a sufficient convergence within gaale step. If the tolerance is
not met, the initial conditions for the following time stepeanot precise enough and the
error will be accumulated. All of the varied parameters hafl@ence on if the sufficient
tolerance is met. They have the following role in the itemafgprocess:
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A smaller time step reduces the unlinear effects and thuscesdthe iteration re-
quired to reach the sufficient tolerance that assures geuidtse

A smaller relaxation factor postpones convergence anddhauses a need for more
iteration rounds.

A finer mesh slows down the converging process and thus menaian within a
time step is required to reach given tolerances.

With more SIMPLE-loops, tighter tolerances are reached.

Dispite of the fully implicit discretization ilcoFOAM, the stability of the computation is
impaired by the intermediate steps in the solution procedline pressure corrections are
of explicit nature. This imposes time step limitations theg difficult to formulate in a
precise manner [2]. Since no underrelaxation is applieddROAM, time step provides
the only means to account for the unlinear effects and tosatie accuracy with a given
mesh.

The potential benefit of the SIMPLE-algorithm in comparisaith the PISO-algorithm

is, that underrelaxation and the number of SIMPLE-loopslzansed to adjust the com-
putation to account for problems induced by a longer timp.sta this perspective the
problem of choosing one of these solvers can be turned iet@tbblem of deciding if

the longer time step offsets the extra costs caused by adjuke computation with un-

derrelaxation and the number of SIMPLE-loops. Thus, thiefohg conclusion can be
drawn.

Using a SIMPLE-based solver can be recommended in caseg whinear effects are
not dominating. In such cases a longer time step can beadil#nd thus a specified
time range can be covered with less computational effoth @iSIMPLE- than with a
P1SO-based solver. However, if the unlinear effects aratgrethe mesh is large enough,
a SIMPLE-based solver requires strict tolerances i.e. n&lMPLE-loops within each
time step, which cancels out the benefits achieved with thgdotime step.

Because a PISO-based solver lacks underrelaxation, tepassthe only way to improve

accuracy and the required time step is always relativelytst®ince the accuracy of a
P1SO-based solver is at it maximum with very few PISO-lo@B]SO-based solver is a
good solver choise for cases with strong unlinearity.
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4 Error Discussion and Further Subjects for Study

In this study three parameters were varied. There are mamg pavameters that affect
the computation and its convergence, for example disatghiz methods. Changing these
parameters would lead to different results. However, thenpmena seen in the results
would probably not change considerably.

In this case-study very simple, orthogonal, meshes weré. uBkus, it remains unclear
how the solvers behave with more complex meshes with ndreganal terms included.

Non-orthogonalities will produce new terms into the equagiand thus affect the required
computational effort. This study, however, does not tethdy affect one solver more
than the other and if they do, which solver will benefit morbug, the effect of the cells’

shapes on the convergence and feasibility of the solversddmian interesting subject
for study.

The way in which a finer mesh affects the required computatieffort remains some-
what ambiquous. It is seen that the required number of SIMBIoas increases with
mesh size. However, with different tolerances within a SIMRoop the results of this
study would be different. One parameter might be emphasizae@ and another’s effect
might be less obvious. Thus a study on how much more SIMPlogda@re required with
different tolerances within a SIMPLE-loop would give a leetinsight into the problem
and thus also a better starting point for a solver choise.
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Appendix 1

JAS

1
div(phi,U)=QUICK, nC=30,
At=0.05, a; =0.7, @, =0.3
div(phi,U)=QUICK, nC=80,
At=0.05, a; =0.8, a,=0.3
div(phi,U)=QUICK, nC=80,
At=0.05, oy =0.7, @, =0.3
div(phi,U)=QUICK, nC=30,
At=0.01, a;; =0.7, o,=0.3
div(phi,U)=QUICK, nC=30,
At=0.05, o, =0.8, a,=0.3
div(phi,U)=QUICK, nC=80,
At=0.01, o, =0.7, @, =0.3
div(phi,U)=QUICK, nC=80,
At=0.01, oy =0.8, ,=0.3
div(phi,U)=QUICK, nC=30,
At=0.01, o =0.8, a,=0.3

Az

AL finest

Figure 2 Convergence of Spatial and Temporal Errors wéhsientSimpleFoamand ico-
Foam.icoFoamin the upper andransientSimpleFoanm the lower picture
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Grid convergence for div(phi,U) = QUICK
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Figure 3 div(phi,U)=QUICK, mesh (32x320Foam
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Grid convergence for
div(phi,U)=QUICK, nC=30, At=0.05
a;=0.8, o,=0.3
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Figure 4 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80-0.05 ,ay=0.7,a,=0.3

Grid convergence for
div(phi,U)=QUICK, nC=30, At=0.01
a;=0.7, @,=0.3
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Figure 5 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80-0.01 ,ay=0.7,a,=0.3



Grid convergence for
div(phi,U)=QUICK, nC=30, At=0.01
a;=0.8, o,=0.3
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Figure 6 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80-0.05 ,ay=0.8,a,=0.3

Grid convergence for
div(phi,U)=QUICK, nC=80, At=0.05
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Figure 7 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80-0.05 ,ay=0.7,a,=0.3

25
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Grid convergence for
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Figure 8 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80-0.01 ,0y=0.8,0,=0.3
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Figure 9 div(phi,U)=QUICK, mesh=(32x32), nCorrectors=80-0.05 ,ay=0.8,a,=0.3
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Grid convergence for
div(phi,U)=QUICK, nC=80, At=0.01
a;=0.7, a,=0.3
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Figure 10 div(phi,U)=QUICK, mesh=(32x32), nCorrector§=8t=0.01 , ay=0.8,
ap=0.3

Grid convergence for
div(phi,U)=QUICK, nC=80, At=0.01
a;=0.8, ,=0.3
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Figure 11 div(phi,U)=QUICK, mesh=(32x32), nCorrector8=3\t=0.01 , ay=0.7,
ap=0.3
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