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Further development of 
the compressible flow 

solver centralFoam



 The solver centralFoam
 New developments 

− illustrated by a few example applications
 Conclusion

Outline



 Density-based solver for non-viscous, 
compressible flows, using conservative 
variables formulation.

 Godunov-like, Riemann-solver-free approach, 
using central-upwind schemes.

 Explicit (forward Euler) time integration.
 From it, rhoCentralFoam solver was 

developed, for viscous compressible flows, 
and included in OpenFOAM 1.5.

 Ref: http://openfoamwiki.net/index.php/TestLucaG.

The solver centralFoam



The solver centralFoam

Example computations:
● A 2D Riemann problem.
● Mach 3 forward step in a 

channel.



 SSP, Runge-Kutta time integration.
 Time-preconditioning.
 Viscous flows (incompressible, laminar).
 Steady-state convergence acceleration:

− Local time stepping;
− Bulk viscosity damping;
− Residual smoothing.

 Dual time stepping.

New developments



 2nd and 3rd order, multi-stage R-K scheme.
 According to theory, stability limits are:

− CFL ≤ 0.5 for 1-stage, 1st order (i.e. fwd Euler)
− CFL ≤ 0.5 for 2-stages, 2nd order

 relative efficiency = 0.5

− CFL ≤ 2.0 for 5-stages, 2nd order
 relative efficiency = 0.8

 In practice:
− Hi-speed flow (shocks) 2-stages, CFL ~ 0.4
                                  or 5-stages, CFL ~ 1.5
− Lo-speed (subsonic) flow 5-stages, CFL = 2

 Ref: Spiteri, R. J. and Ruuth, S., 2002.

SSP, R-K time stepping



 An example application is the 2D unsteady 
flow around a supersonic forward step in a 
channel.

 Results are shown for time integration using:
− Fwd Euler, CFL

MAX
 = 0.2 (fails for CFL

MAX
 = 0.4)

− R-K 2-stages, 2nd order, CFL
MAX

 = 0.4

− R-K 5-stages, 2nd order, CFL
MAX

 = 1.6
 All solutions computed on a very fine, 

uniform, 160x384 + 40x96 cells grid.
 Ref: Woodward, P. and Colella, P., 1984.

SSP, R-K time stepping



Forward step at M=3

Fwd Euler, CFL
MAX

 = 0.2

Execution time = 8761s
Velocity magnitude by colour, density by contours



Forward step at M=3

R-K 2-stages, CFL
MAX

 = 0.4

Execution time = 8495s
Velocity magnitude by colour, density by contours



Forward step at M=3

R-K 5-stages, CFL
MAX

 = 1.6

Execution time = 5275s
Velocity magnitude by colour, density by contours



Time-preconditioning

 Problems:
− Convergence for low Mach number flows is poor 

due to system stiffness, as a result of disparate 
particle and acoustic velocities.

− Numerical viscosity becomes too high.
 Time-preconditioning allows:

− Computation of flows down to very low Mach..
− ..as well as of truly constant density flows..
− ..within the framework of a compressible flow 

solver.
 Ref: Weiss, J. M. and Smith, W. A., 1995.



Time-preconditioning

 Flow solver re-formulated for conservative or 
primitive variables, chosen at run-time:

− Conservative variable formulation is simpler, and 
thus faster when applicable.

− Primitive variable formulation is required for 
extremely low Mach or truly constant density 
flows.

 Time-preconditioning is optionally applied to 
both formulations and specializes for truly 
constant density flow.

 Preconditioner works for both inviscid and  
viscous flows.



Time-preconditioning

 An example application is the 2D inviscid 
flow on a 10% thick circular arc bump in a 
channel.

− Changing inlet Mach number from 2, to 0.675, 
and to 0.01, supersonic, transonic and 
incompressible flows are obtained.

− All cases shown solved using primitive variable 
formulation with preconditioning ON and same 
solver options except for R-K scheme and CFL.

− Solutions are computed on a 192x128 cells 
uniform grid.



Circular arc bump

Mach = 2.0

Mach = 0.675



Circular arc bump

Mach = 0.01

simpleFoam
(incompressible)



Viscous flow

 Viscous terms have been added using a fully 
explicit formulation.

 This results in a viscous limitation on the 
time step, based on the von Neumann 
number, of the form:
maxNe < O(1) 

 At present, viscous terms have been added 
only for incompressible laminar flows; 
extension to compressible turbulent flow is, 
in principle, straightforward (thanks to 
OpenFoam technology).



Viscous flow

 A first example application is the very basic 
2D laminar viscous flow in a square cavity.

− The solution for the case of Re=400 is computed 
on a 128x128 cells uniform grid.

 A second classical test case is the 2D laminar 
flow around a circular cylinder in a channel.

− At Re=20 the solution is steady.
− The solution is computed on 16K cells 

unstructured grid.
− Ref: Schäfer, M. and Turek, S.

 



Lid-driven cavity

centralFoam simpleFoam



Lid-driven cavity

centralFoam simpleFoam

V

U



2D circular cylinder
Re=20

centralFoam

Cl=0.0147
Cd=5.5974

icoFoam

Cl=0.0185
Cd=5.6366

Reference

Cl=0.0104÷0.0110
Cd=5.5700÷5.5900



 Old, well-known techniques are applied to 
accelerate convergence to steady-state.

 Local time stepping:
− To advance solution at the fastest possible rate in 

each cell.
 Bulk viscosity damping:

− To help damping pressure waves.
− Ref: Mazaheri, K. and Roe, P. L., 2003.

 Residual smoothing:
− To increase the stability limit (CFL) of the R-K time 

stepping schemes and to provide additional error 
damping mechanism.

− Ref: Enander, R. and Sjögreen, B., 1996.

Convergence acceleration



 Bulk viscosity damping:
− Is mostly effective for inviscid internal flows (e.g. 

channel bump).
− Computational overhead is minimal (one 

additional term to the momentum equation).
 Residual smoothing:

− no, implicit or implicitExplicit smoothing 
option chosen at run time.

− Allows 2 to 4 times larger time step.
− Implicit equations approximately solved using few 

(3-10) iterations of chosen smoothSolver.
− Very effective, with moderate computational 

overhead (15-30%).

Convergence acceleration



 As a first example, the effectiveness of the 
different acceleration techniques is shown for 
the case of the cavity flow at Re=400.

 A second example is visually showing the 
effectiveness of the combination of LTS, RS 
and BV, compared to pure R-K stepping, to 
reach steady-state for the transonic case of 
the arc bump at M=0.675.

Convergence acceleration



Convergence acceleration



Convergence acceleration



Convergence acceleration



Convergence acceleration

R-K, 2-stages

CFL = 0.4

LTS+BV+RS

R-K, 2-stages

CFL = 0.4

video

file:///home/luca/OpenFOAM/luca-1.4.1/doc/Conference_2008/Pictures/Arc/arc_0675.avi


 Problem:
− Time-preconditioning and primitive variables 

formulation destroy temporal accuracy.
 Dual-time stepping involves:

− An outer loop through physical time..
− ..which wraps an inner loop in pseudo-time.
− Inner loop is run until convergence to a “steady-

state” in pseudo-time.
− Preconditioning is applied to pseudo-time time 

derivative only.
− All steady-state convergence acceleration 

techniques can be applied.

Dual-time stepping



Dual-time stepping

 The time-dependent term is typically 
discretized using backward difference 
scheme (2nd order, three points scheme).

 The pseudo-time derivative is driven towards 
zero by the R-K multi-stage algorithm.

 The time dependent term is treated implicitly 
within each R-K stage, thus the pseudo-time 
step is determined only by stability condition 
of the multi-stage scheme.

 Physical time steps is limited only by 
accuracy, not by CFL.



Dual-time stepping

 An example application is again the 2D 
laminar flow around a circular cylinder in a 
channel.

− At Re=100 the solution is unsteady and soon 
becomes periodic (von Karman vortex street).

− The solution is computed on the same 16K cells 
unstructured grid used for the Re=20 case.

− Ref: Schäfer, M. and Turek, S.
 



2D circular cylinder 
Re=100

 icoFoam uses:
− deltaT = 0.0025, giving CFL

MAX
 ~ 3.5;

− nCorrectors = 2;
− nNonOrthogonalCorrectors = 2.

 centralFoam uses:
− deltaT = 0.0100 (NB: physical time step);
− 10-1 residual reduction at each time step..
− ..which requires ~ 40÷50 pseudo-time steps..
− ..using RS, LTS and BV.

 



2D circular cylinder 
Re=100

centralFoam

icoFoam

video

file:///home/luca/OpenFOAM/luca-1.4.1/doc/Conference_2008/Pictures/Laminar_cylinder/Unsteady/unsteady_cylinder.avi


2D circular cylinder 
Re=100

centralFoam

icoFoam



2D circular cylinder 
Re=100

centralFoam

icoFoam



2D circular cylinder 
Re=100

centralFoam

ClMax= 0.975
St  = 0.294

icoFoam

ClMax= 1.027
St  = 0.288

Reference

Cl=0.9900÷1.0100
St=0.2950÷0.3050



2D circular cylinder 
Re=100

centralFoam

icoFoam



2D circular cylinder 
Re=100

 Execution time for centralFoam is much 
larger (~ 13 times), because the high 
Strouhal limits the physical deltaT.

 Running on a 4-times finer grids (60k), and 
keeping:

− icoFoam CFL unchanged;
− centralFoam physical deltaT unchanged;

   reduces the disadvantage to ~ 3.5 times.
 



 The field of application of the density-based 
compressible flow solver centralFoam has 
been extended to:

− low-Mach number and incompressible flows.
− laminar viscous flows.

 Convergence to steady state has been 
accelerated applying standard techniques.

 A dual-time scheme has been implemented, 
for the computation of unsteady flows when 
time-preconditioning is activated.

Conclusion



The current single solver could be split into:

cCentralFoam
 conservative var. formulation for high-Mach.
 time accurate multistage R-K time stepping.
 steady state convergence acc. with LTS, RS, BV.

pCentralFoam
 precond. primitive var. formulation for low-Mach.
 multistage R-K smoothing.
 steady state convergence acc. with LTS, RS, BV.
 dual-time unsteady computation.

 icoCentralFoam
 same as pCentralFoam...
 ...but specialized for constant density flow.

Conclusion



Further development of 
the compressible flow 

solver centralFoam

...is still ongoing

Thank you!
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