Difference between revisions of "Contrib/EHDFoam"

From OpenFOAMWiki
m (test case)
m (introduction)
Line 1: Line 1:
 
=EHDFoam=
 
=EHDFoam=
== introduction ==
+
== Introduction ==
  
 
Electrohydrodynamics deal with fluid motion induced by electric fields. In the mid 1960s G.I. Taylor introduced the leaky dieletric model to explain the behaviour of droplets deformed by steady field {cite}, and J.R. Melcher used it extensively to develop electrohydrodynamic{cite}. Here, we developed a Numerical model of electrohydrodynamics, the model concides the Taylor-Melcher Leaky Dielectric Model with VOF (Volume of Fraction) method. The Numerical solver was created in OpenFOAM-1.5.
 
Electrohydrodynamics deal with fluid motion induced by electric fields. In the mid 1960s G.I. Taylor introduced the leaky dieletric model to explain the behaviour of droplets deformed by steady field {cite}, and J.R. Melcher used it extensively to develop electrohydrodynamic{cite}. Here, we developed a Numerical model of electrohydrodynamics, the model concides the Taylor-Melcher Leaky Dielectric Model with VOF (Volume of Fraction) method. The Numerical solver was created in OpenFOAM-1.5.

Revision as of 17:49, 23 November 2009

1 EHDFoam

1.1 Introduction

Electrohydrodynamics deal with fluid motion induced by electric fields. In the mid 1960s G.I. Taylor introduced the leaky dieletric model to explain the behaviour of droplets deformed by steady field {cite}, and J.R. Melcher used it extensively to develop electrohydrodynamic{cite}. Here, we developed a Numerical model of electrohydrodynamics, the model concides the Taylor-Melcher Leaky Dielectric Model with VOF (Volume of Fraction) method. The Numerical solver was created in OpenFOAM-1.5.

1.2 Model Equations

Equation.jpg

1.3 Source Code

Sources can be downloaded below: Media:EHDFoam.rar

1.4 How to Install

Compile the EHDTwoPhaseMixture first and then compile EHDFoam.

1.5 Test Case

Media:EHDdroplet.zip