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This presentation shows how to use OpenFoam to simulate gas 
phase combustion

Overview

Theory 

Tutorial case

Solution strategies

Validation



The focus of combustion simulation depends on the application

Furnace operation/retrofitPollutant formationBurner design



The focus of the present tutorial is simulating a model flame

■ Model flames are a basis to test and evaluate 
combustion solvers

■ Tutorial case is a turbulent methane/air flame
(“Flame D” from Sandia/TNF workshop)

■ Solver applications used are
rhoReactingFoam  (PaSR model)
edcSimpleFoam (EDC model)

■ Validation with experimental data to assess 
the solver/model accuracy

Photo: Sandia/TNF
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Combustion simulation is characterized by chemical reactions

Global reactions summarize the combustion process:

Detailed chemical mechanisms describe events on molecular level:

from GRI-Mech 3.0 (325 reactions, 53 species)

■ Chemical mechanisms need to be used within their specification limits,
eg. GRI-Mech 3.0: methane/natural gas, T in 1000-2500 K, Φ in 0.1-5

■ Detailed mechanism are more accurate (e.g. NO
x
, ignition delay), but 

computationally much more expensive 
→ level of detail needs to be chosen by the user

CH42O2⇔CO22H2O

CH4O⇔OHCH3

CH4⇔CH3H
CH4H⇔CH3H2

CH4OH⇔CH3H2O
⋮



Chemical reactions can be described with equilibrium or kinetic 
rates (incl. “infinite rate”)

Equilibrium calculation depends only on thermodynamic data: h°, s°, cp°
But concerning combustion, many things are not in equilibrium!

Chemical kinetics determine the reaction rate e.g. with an Arrhenius type 
formulation:

“Infinite rate” chemistry is a special case, where reaction rates are assumed 
to be infitely fast

kinetically 
inhibited 

R=AT bexp− E
ℜT  CCH4CO2

0.5



In turbulent flows, turbulence/chemistry interaction defines the 
reacting flow

■ Turbulence 
enhances mixing of 
species such as 
fuel, oxidizer and 
products

■ Strong turbulence 
can suppress 
combustion 
→  local extinction

Turbulent flow Chemical kinetics

■ In a laminar flow, 
combustion is 
controlled 
exclusively by 
chemical kinetics

■ Combustion leads to 
flow acceleration 
→ modification of 
flow field



Different approaches exist to model the turbulence/chemistry 
interaction

cf. Poinsot, Veynante “Theoretical and Numerical Combustion”

x

Turbulent mixing (e.g. EDC, PaSR)

Geometrical analysis (flamelet)

One-point statistics (PDF)

flam
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The Eddy-Dissipation Concept (EDC) assumes reactions in fine 
structures
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ṁ∗
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°

Y i = γ
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∗
)Y oRelation of mean, fine structure 

and surrounding state:

Fraction of the flow occupied 
by fine structures:

∗



EDC reaction rate depends on turbulent flow properties and 
chemical kinetics approach

The fraction of the flow 
occupied by fine structures:

Mass transfer rate between the
fine structures and the surroundings:


∗
= 9.7  ⋅k 2 

3
4

ṁ∗= 2.45   
1
2

Chemical kinetics approaches for fine structure composition Yi
*:

Fast
Chemistry

Local Extinction Perfectly Stirred 
Reactor (PSR)

accuracy

computational cost



The Fast Chemistry approach assumes infinitely fast reactions

■ Assumes sufficient time to achieve equilibrium inside fine structures
■ Works only with irreversible global reactions

Combustion occurs if fuel, oxidizer and products meet simultaneously

→ Product mass fractions must be initialized accordingly

fuel

oxidizer

products

ignite

combustion



The PSR approach determines the steady-state of a perfectly 
stirred reactor
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Local Extinction approach employs data from a priori PSR 
calculations

∗ch ⇒ R=0

τch is the minimum residence time which sustains combustion in PSR.

high turbulence
(τ*=2.e-6)

medium turbulence
(τ*=2.e-4)

T = 300 K
(τch= 1.e-4)

T = 900 K
(τch= 2.e-5)

Example 1: 
Close to burner

Example 2: Free 
stream reaction zone

<

>



The PaSR combustion model derives the reation rate in a transient 
manner

Ri=
C i ,1−C i ,0

 t

Δt

Mixed fraction of cell that can react: κ

C0 C1



The parameter κ is based on two time scales

=
ch

mch

1
ch

=max − R fuel

Y fuel

,−
RO2

Y O2
m= k

  
1
2

Chemical time scale (infinite or finite rate):Turbulent mixing time scale:

Mixed fraction that reacts:

1
ch

=−
∂ R
∂Y



In OpenFOAM, mixing time scale is implemented slightly different 

τm=√ k
ϵ ( νϵ )

1
2τm=Cmix √

μeff

ρϵ

In rhoReactingFoam: In Chomiak (1996):

Both can be transformed into each other, using:

μt
ρ =Cμ

k
ϵ , Sct=1, Ret=

k 2

ϵ ν

As result, we obtain:

Cmix=√ 1
1+Cμ Re t

Chomiak (1996): Flame Liftoff in Diesel Sprays 25th 
Symp. Int. on Comb. pp. 2557-2564



The value for Cmix needs to be estimated a priori

Typical 
turbulent flow

Ret ≈ 1000

Cmix ≈ 0.1

Laminar flow

Ret = 0

Cmix = 1.0

Extremely 
turbulent flow

Ret → ∞

Cmix → 0.0

Cmix=√ 1
1+Cμ Re t

Nordin (2001): Complex Chemistry Modelling of 
Diesel Spray Combustion, PhD-Thesis

Typical values for Cmix:  0.001 – 0.3; cf. Nordin (2001)



Radation heat transfer needs to be considered in combustion 
simulation

Radiation Transport Equation:

P1 - Transport

Discrete Ordinates (DOM)

Gas-Absorption Modelling:

constant

RADCAL-Polynomials

WSGGM (custom)

Peak temperature ≈250 K higher 
without radiation modelling
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The tutorial case is a non-premixed piloted flame (“Flame D”)  

Characteristics: 
Steady-state, piloted, methane/air, diffusion flame, some local extinction

Geometry:
Axi-symmetric, 2D

Main jet (CH4/air)

Pilot (hot flue gas)

Coflow (air)



The boundary conditions are identical for rhoReactingFoam and 
rhoSimpleFoam

Ux
 [m/s]

p
[Pa]

T
[K]

Yi
[-]

k
[m²/s²]

epsilon
[m²/s³]

Main jet 49.6 zeroGradient 294 fixedValue Iturb=0.0458 Lturb=5.04e-4

Pilot 11.4 zeroGradient 1880 fixedValue Iturb=0.0628 Lturb=7.35e-4

Coflow 0.9 zeroGradient 291 fixedValue Iturb=0.0471 Lturb=0.0197

Outlet zeroGradient 100000 zeroGradient zeroGradient zeroGradient zeroGradient

Walls 0.0 zeroGradient zeroGradient zeroGradient wall function wall function

Front and backside of axi-symmetric domain are specified as 'wedge'.



edcSimpleFoam: Flow field initialized as required by chemical 
kinetics approach

■ Fast Chemistry and Local Extinction: Set CO2 and H2O mass fraction to 0.01 
everywhere.

■ Perfectly Stirred Reactor: Initialize with Fast Chemistry or Local Extinction 
solution.

■ Setup chemistryProperties:

edcFastChemCoeffs
{
    oxidiserName O2;
    mainFuelName CH4; 
}

edcPSRCoeffs
{
    relativeTolerance 1.e-6;
    absoluteTolerance 1.e-14;
    maxIterations 1.e8;
    
    useBinaryTree off;
    binaryTreeTolerance 1e-4;
    binaryTreeSize 1.e7;    
}

edcLECoeffs
{

    oxidiserName O2;
    mainFuelName CH4;    
    autoIgnitionTemperature 

868;

  
    curve1
    {
        temperature 300;
        tauChMin  7.00E-005;
    }
…
}

no local extinction 
above this 
temperature



rhoReactingFoam: Choosing C
mix

 and ODE intergrator

■ Estimate turbulent Reynolds number:

 Ret=500 → Cmix = 0.15

■ Setup chemistryProperties:

odeCoeffs
{
    ODESolver       SIBS;
    eps             5.0e-4;
    scale           1.0;
}

SIBS is stable 
enough for solving 
detailed chemistry



Setting-up discretization schemes

■ Convective term: Linear upwind discretization (2nd order accurate)
default    Gauss linearUpwind cellLimited Gauss linear 1; 

For species Yi (for rhoReactionFoam: Yi and hs)

div(phi,Yi) Gauss  multivariateSelection

{

//hs linearUpwind cellLimited Gauss linear 1;

CH4 linearUpwind cellLimited Gauss linear 1;

O2       linearUpwind cellLimited Gauss linear 1;

…

}

■ Time discretization: (Pseudo) steady-state 
edcSimpleFoam (steady-state solver)

default        steadyState;

rhoReactingFoam (transient solver)
default         SLTS phi rho 0.7;

default         CoEuler phi rho 0.4;

global under-relaxation 
factor

max. CFL number



Setting-up fvSolution

Numerical solver precision depends on solver type: 

Transient solver requires each time-step to be accurate
all variables:  relTol = 0. ;

Steady state solver can reach solution through intermediate results
pressure: relTol 0.001;
other variables: relTol 0.1; 

intermediate results will not be 
accurate



Chemical mechanisms can be defined in Chemkin or OpenFOAM 
native format

CH4 + 2O2 => CO2 + 2H2O    3e13  0.0   47e3
FORD / CH4 0.7 /
FORD / O2 0.8 /

Chemkin format uses units: mol, cm³, s, K;  cal

Example: Arrhenius type kinetics

irreversibleArrheniusReaction

    CH4^0.7 + 2O2^0.8 = CO2 + 2H2O (9.48683e+11 0 23650)

OpenFoam native format uses units: kmol, m³, s, K; K

Use chemkinToFoam to convert chemkin files (or to check their consistency)

R=A T b exp − E
ℜT  CCH4

0.7 CO2
0.8
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Combustion simulation often faces stability issues 

Many error sources are possible 
because numerous models are applied 
simultaneously, for example:

■ Compressible flow
■ Coupling of transport equations
■ Numerically stiff reaction 

mechanisms

Iterations

Residuals



Solution strategies include good initialization and under-relaxation

Possible “well initialized” flow fields are:
■ Cold flow
■ Starting solution (steady-state; 1- or 2-Step)
■ Products

Strong coupling between transport equations may be broken with 
different under-relaxation factors.

species: 0.2
(reaction model)

temperature: 0.7

density: 0.1pressure/
velocity: 0.3/0.7

Under-relaxation only applicable to steady-state cases. 
Unsteady solver based on Transient-SIMPLER needed?



Tabulation of PSR reactor results can provide speed-up and 
additional stability




∗

ṁ∗

Y 1
:
Y n

 
T∗

Y 1
∗

:
Y n

∗
Mean flow data PSR integration 

results



Tabulation of PSR reactor results can provide speed-up and 
additional stability


T∗

Y 1
∗

:
Y n

∗
Normalized mean 

flow data
PSR integration 

results
1

1



Tabulation of PSR reactor results can provide speed-up and 
additional stability

Normalized mean 
flow data

PSR integration 
results

1

1

1

1
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flow data

PSR integration 
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Tabulation of PSR reactor results can provide speed-up and 
additional stability
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Normalized mean 
flow data

PSR integration 
results

Tabulation of PSR reactor results can provide speed-up and 
additional stability



Limiting temperature is possible in steady-state cases 

In a steady state case, intermediate “time steps” are not accurate. 
→ Temperature may temporarily increase and needs to be limited

Solver level implementation in edcSimpleFoam:

■ New enthalpy field calculated from species mass fractions and T
min

■ Another enthalpy field calculated for T
max

■ Both fields are used to limit enthalpy field

■ T
max

 and T
min
 are specified in thermophysicalProperties

Request for integrated limitation filed in OpenCFD's bugtracker (Issue #57).



Optimal parallelization depends on the complexity of the chemical 
model

optimized for network bandwidth optimized for PSR-integration

Integrating complex chemical mechanisms is computationally much more 
expensive than solving transport equations (even if there are many)!
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Detailed reaction mechnism predicts temperature profile accurately

Radiation modeling used with EDC, not used with PaSR.

Influence of Cmix is minimal

exp. data: Barlow, R. S. and Frank, J. H., Proc. 
Combust. Inst. 27:1087-1095 (1998)



Intermediate species and pollutants are more difficult to predict



ParaFoam's “calculator” can be used to check Ret assumption



Comparison with measurements may require special post-
processing

Common difficulties when comparing simulated mass fractions with measurements:

■ Measured data are often mole fractions or concentrations
If not all (major) species are measured, correct conversion to mass fractions 
impossible

■ Flue gas or emission monitoring can be measured in “dry gas”, i.e. after water 
vapor has been condensed out
Simulated data comprise a complete set, therefore they can be accurately 
converted

New utility massToMoleFraction handles conversion together with “-dryGas” option



 

for the EDC model:
B. Magnussen: The Eddy Dissipation Concept: A Bridge between 
Science and Technology, ECCOMAS Thematic Conference on 
Computational Combustion, Lisbon, Portugal, 2005

for the validation of the OpenFoam implementation:
B. Lilleberg, D. Christ, I.S. Ertesvåg, K.E. Rian, R. Kneer, 
Numerical simulation with an extinction database for use with 
the Eddy Dissipation Concept for turbulent combustion 
(submitted) 

Final note: When using edcSimpleFoam or edcPisoFoam, please cite



 

Thank you for your attention!
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