Difference between revisions of "Contrib/CompressibleMixingPhaseChangeFoam"

From OpenFOAMWiki
(Model Equations Derivation)
(Model Equations Derivation)
Line 107: Line 107:
  
 
* '''Energy equation'''
 
* '''Energy equation'''
Energy equation for mixture temperature obtained from sum of energy equations for each phase. Consider energy equation for phase-1:
+
Energy equation for mixture temperature obtained from sum of energy equations for each phase. Consider internal energy equation for phase-1:
  
 
<math>
 
<math>
Line 113: Line 113:
 
\nabla \cdot \left ( \alpha_1 \rho_1 e_1 \textbf{U} \right ) + \nabla \cdot \textbf{q}_1
 
\nabla \cdot \left ( \alpha_1 \rho_1 e_1 \textbf{U} \right ) + \nabla \cdot \textbf{q}_1
 
=
 
=
-\alpha_1 p \nabla \cdot \textbf{U}
+
-\alpha_1 p (\nabla \cdot \textbf{U} - \dot m_1 / \rho_1)
 
+
 
+
 
\dot m_1 e_1
 
\dot m_1 e_1
 
</math>
 
</math>
  
by converting to enthalpies we get:
 
  
<math>
+
By combining equations of phases, we get internal energy balance for mixture in temperatures:
\frac{\partial \alpha_1 \rho_1 h_1} {\partial t} +
+
\nabla \cdot \left ( \alpha_1 \rho_1 h_1 \textbf{U} \right )-
+
\left (
+
\frac {\partial \alpha_1 p}{\partial t} + \nabla \cdot \left ( \alpha_1 p \textbf{U} \right )
+
\right )
+
+ \nabla \cdot \textbf{q}_1
+
=
+
-\alpha_1 p \nabla \cdot \textbf{U}+
+
\dot m_1 h_1 - \dot m_1 \frac{p}{\rho_1}
+
</math>
+
 
+
By substituting temperature instead of enthalpy, after conversion to volume fluxes we get equation for temperature (divided by
+
<math>\rho_1 C_{p,1} </math> )
+
 
+
<math>
+
\alpha_1 \left (\frac{\partial T}{\partial t} + \nabla \cdot \left ( T \textbf{U} \right ) \right )
+
+ T \frac{\alpha_1}{\rho_1} \frac{d \rho_1}{d t} + T \frac{d \alpha_1}{d t} - \frac{1}{\rho_1 C_{p,1}} \nabla \cdot \textbf{q}_1
+
=
+
T \frac{\dot m_1}{\rho_1} - \frac{1}{\rho_1 C_{p,1}} \frac{p}{\rho_1} \dot m_1 +
+
\frac{1}{\rho_1 C_{p,1}}
+
\left (
+
\alpha_1 \frac {d p}{d t} + p \frac {d \alpha_1}{d t}
+
\right )
+
</math>
+
 
+
By combining equations of phases, we get energy balance for mixture:
+
  
 
<math>
 
<math>
 
\frac{\partial T}{\partial t} + \nabla \cdot \left ( T \textbf{U} \right ) - T \nabla \cdot \textbf{U}
 
\frac{\partial T}{\partial t} + \nabla \cdot \left ( T \textbf{U} \right ) - T \nabla \cdot \textbf{U}
-\frac{1}{\rho_1 C_{p,1}} \nabla \cdot \kappa_1 \nabla T -\frac{1}{\rho_2 C_{p,2}} \nabla \cdot \kappa_2 \nabla T
+
-\frac{1}{\alpha_1 \rho_1 C_{v,1} + \alpha_2 \rho_2 C_{v,2}} (\nabla \cdot \kappa_1 \nabla T + \nabla \cdot \kappa_2 \nabla T)
 
=  
 
=  
 
</math>
 
</math>
  
 
<math>
 
<math>
\left ( \frac{\alpha_1}{\rho_1 C_{p,1}} + \frac{\alpha_2}{\rho_2 C_{p,2}} \right ) \frac{d p}{d t}
+
-\left ( \nabla \cdot \textbf{U} - \left(\frac{1}{\rho_1}-\frac{1}{\rho_2}\right) \dot m_1 \right )
+ \frac{p}{\rho_1 C_{p,1}}\frac{d \alpha_1}{d t} + \frac{p}{\rho_2 C_{p,2}}\frac{d \alpha_2}{d t}
+
\frac{p}{\alpha_1 \rho_1 C_{v,1} + \alpha_2 \rho_2 C_{v,2}}
+ \dot m_1 p \left (-\frac{1}{\rho_1 \rho_1 C_{p,1}} + \frac{1}{\rho_2 \rho_2 C_{p,2}}\right )
+
- \left ( \frac{\partial L}{\partial t} + \nabla \cdot (\textbf{U} L) - L \nabla \cdot \textbf{U} \right )
 +
\frac{\alpha_2 \rho_2}{\alpha_1 \rho_1 C_{v,1} + \alpha_2 \rho_2 C_{v,2}}  
 
</math>
 
</math>
 +
 +
Where <math> L </math> - latent heat of evaporation
  
 
* '''Linking liquid volume transport to pressure equation''' is done by introducing <math>+\alpha_1 \nabla \cdot \textbf{U}</math> and <math>-\alpha_1 \nabla \cdot \textbf{U}</math> at r.h.s of volume fraction balance equation. Then, <math>-\nabla \cdot \textbf{U}</math> replaced by value from pressure equation
 
* '''Linking liquid volume transport to pressure equation''' is done by introducing <math>+\alpha_1 \nabla \cdot \textbf{U}</math> and <math>-\alpha_1 \nabla \cdot \textbf{U}</math> at r.h.s of volume fraction balance equation. Then, <math>-\nabla \cdot \textbf{U}</math> replaced by value from pressure equation
Line 179: Line 155:
  
 
* Phase change model
 
* Phase change model
 +
Schnerr-Sauer
  
 
== Model Equations Summary ==
 
== Model Equations Summary ==

Revision as of 15:31, 6 August 2013

Solver for two fluids with phase change (for example - water <---> steam), pressure and temperature density dependence

1 Model Equations Derivation

  • Equation of state

Low-compressible fluid: 
\rho = \rho_0 + \frac{\partial \rho}{\partial T} \Delta T + \frac{\partial \rho}{\partial p} \Delta p

Ideal gas:  \rho=\frac{p}{(R/M)T}

By combining this equations, we can get general relation:


\rho = \hat \rho + \frac{\partial \rho}{\partial p} \Delta p

where \hat \rho computed with respect to previous formulations

mixture density  \rho calculated as



\rho =  \alpha_l \rho_l + \alpha_v \rho_v

Here, and afterthere indices:

1,l,f - for liquid (heavy media with low compressibility)

2,g,s - for gas (light media (like steam) with big compressibility)

without index - mixture variable (or all variables local to some phase)

  • Liquid volume transport

Let us consider transport of liquid (heavy phase) volume fraction \alpha_l:


\frac{\partial \alpha_l \rho_l}{\partial t} + \nabla \cdot 
\left (
  \alpha_l \rho_l \mathbf{U}
\right )
=
\dot m_l


By converting to volume fluxes we get:


\frac {\partial \alpha_l}{\partial t} + \nabla \cdot
\left (
 \alpha_l \textbf{U}
\right )
= -\frac {\alpha_l}{\rho_l} \frac {d \rho_l}{dt} + \frac {\dot m_l}{\rho_l}

Using equation of state, we can reformulate substantial derivative for density in terms of pressure for any phase:


\frac {d \rho}{dt}= \frac {d \hat \rho} {dt}
 + \psi \frac {dp} {dt}
 + p \frac {d \psi}{dt}

  • General rule for converting from mass to volume fluxes in transport equation


\frac{\partial \alpha_i \rho_i \zeta}{\partial t}
+
\nabla \cdot 
\left (
\alpha_i \rho_i \textbf{U} \zeta
\right )
= \rho_i \alpha_i 
\left (
 \frac {\partial \zeta}{\partial t} + \nabla \cdot \left ( \textbf{U} \zeta \right )
\right )
+
\zeta \alpha_l \frac {d \rho_i}{dt}  + \zeta \rho_i \frac {d \alpha_i}{dt}

  • Momentum equation (velocity prediction)


\frac {\partial \rho \textbf{U}}{\partial t}
+
\nabla \cdot \rho \textbf{U} \textbf{U} = \nabla \cdot R^{Eff} - \nabla p + \rho \textbf{g}

by substituting piezometric pressure  \hat p = p - \rho \textbf{g} \textbf{x} we get:


\frac {\partial \rho \textbf{U}}{\partial t}
+
\nabla \cdot \rho \textbf{U} \textbf{U} = \nabla \cdot R^{Eff} - \nabla \hat p - \textbf{g} \cdot \nabla \rho

  • Pressure equation obtained by summation of equation for volume phase fraction of liquid and gas phases:


 \nabla \cdot \left ( \textbf{U} \right )
=
- \left ( \frac {\alpha_1 \psi_1}{\rho_1} + \frac {\alpha_2 \psi_2}{\rho_2} \right ) \frac {d p}{d t} - 
\left ( \frac {\alpha_1}{\rho_1} \frac {d \psi_1}{d t} + \frac {\alpha_2}{\rho_2} \frac {d \psi_2}{d t} \right ) p -
\left ( \frac {\alpha_1}{\rho_1} \frac {d \hat \rho_1}{d t} + \frac {\alpha_2}{\rho_2} \frac {d \hat \rho_2}{d t} \right )+
\dot m_1 \left ( \frac{1}{\rho_1} - \frac{1}{\rho_2} \right )

  • Energy equation

Energy equation for mixture temperature obtained from sum of energy equations for each phase. Consider internal energy equation for phase-1:


\frac{\partial \alpha_1 \rho_1 e_1} {\partial t} + 
\nabla \cdot \left ( \alpha_1 \rho_1 e_1 \textbf{U} \right ) + \nabla \cdot \textbf{q}_1
=
-\alpha_1 p (\nabla \cdot \textbf{U} - \dot m_1 / \rho_1)
+
\dot m_1 e_1


By combining equations of phases, we get internal energy balance for mixture in temperatures:


\frac{\partial T}{\partial t} + \nabla \cdot \left ( T \textbf{U} \right ) - T \nabla \cdot \textbf{U}
-\frac{1}{\alpha_1 \rho_1 C_{v,1} + \alpha_2 \rho_2 C_{v,2}} (\nabla \cdot \kappa_1 \nabla T + \nabla \cdot \kappa_2 \nabla T)
=


-\left ( \nabla \cdot \textbf{U} - \left(\frac{1}{\rho_1}-\frac{1}{\rho_2}\right) \dot m_1 \right )
\frac{p}{\alpha_1 \rho_1 C_{v,1} + \alpha_2 \rho_2 C_{v,2}}
- \left ( \frac{\partial L}{\partial t} + \nabla \cdot (\textbf{U} L) - L \nabla \cdot \textbf{U} \right )
\frac{\alpha_2 \rho_2}{\alpha_1 \rho_1 C_{v,1} + \alpha_2 \rho_2 C_{v,2}}

Where  L - latent heat of evaporation

  • Linking liquid volume transport to pressure equation is done by introducing +\alpha_1 \nabla \cdot \textbf{U} and -\alpha_1 \nabla \cdot \textbf{U} at r.h.s of volume fraction balance equation. Then, -\nabla \cdot \textbf{U} replaced by value from pressure equation


\frac {\partial \alpha_l}{\partial t} + \nabla \cdot
\left (
 \alpha_l \textbf{U}
\right )
=
\alpha_1 \nabla \cdot \textbf{U} +
\dot m_1 \left (\frac{1}{\rho_1} - \alpha_1 \left (\frac{1}{\rho_1} - \frac{1}{\rho_2} \right ) \right ) +


\alpha_1 \alpha_2 \left ( -\frac{1}{\rho_1} \frac{d \hat \rho_1}{d t} + \frac{1}{\rho_2} \frac{d \hat \rho_2}{d t}\right )
+\alpha_1 \alpha_2 p \left ( -\frac{1}{\rho_1} \frac{d \psi_1}{d t} + \frac{1}{\rho_2} \frac{d \psi_2}{d t}\right )
+\alpha_1 \alpha_2 \frac{d p}{d t}\left ( -\frac{\psi_1}{\rho_1} + \frac{\psi_2}{\rho_2} \right )

  • Phase change model
Schnerr-Sauer

2 Model Equations Summary

3 Tutorial cases

  • Case #1 - Water Evaporation in Cavity

Solver sources and tutorials located here